首页> 美国卫生研究院文献>other >Nanogap-Based Electrochemical Measurements at Double-Carbon-Fiber Ultramicroelectrodes
【2h】

Nanogap-Based Electrochemical Measurements at Double-Carbon-Fiber Ultramicroelectrodes

机译:双碳纤维超微电极上基于纳米间隙的电化学测量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electrochemical measurements with unprecedentedly high sensitivity, selectivity, and kinetic resolution have been enabled by a pair of electrodes separated by a nanometer-wide gap. The fabrication of nanogap electrodes, however, requires extensive nanolithography or nanoscale electrode positioning, thereby preventing the full exploration of this powerful method in electrode design and application. Herein, we report the simple fabrication of double-carbon-fiber ultramicroelectrodes (UMEs) with nanometer-wide gaps not only to facilitate nanogap-based electrochemical measurements, but also to gain high time resolution, signal-to-background ratio, and kinetic selectivity for dopamine against ascorbic acid. Specifically, ~7 μm-diameter carbon fibers are inserted into a double-bore glass capillary, heat-pulled, and milled by focused-ion-beam technology to yield ~50 μm-long double-cylinder UMEs. The redox cycling of the Ru(NH3)63+/2+ couple across a nanogap between voltammetric generator and amperometric collector electrodes reaches quasi-steady states at fast scan rates of 100 V/s as demonstrated experimentally and even 1000 V/s as predicted theoretically. The transient background of the amperometric collector response is suppressed ~100 times in comparison with that of the voltammetric generator response. Nanogap voltammograms based on the collector response against the cycled generator potential are quantitatively analyzed without background subtraction to reproducibly yield nanogap widths of ~0.18 μm and a standard electron-transfer rate constant of 0.9 cm/s. Moreover, nanogap-mediated redox cycling can be initiated by dopamine oxidation at the generator electrode to largely improve the dopamine selectivity of the collector response against ascorbic acid, which is also oxidized at the generator electrode to immediately and irreversibly produce a redox-inactive species.
机译:一对纳米级间隙隔开的电极使电化学测量具有前所未有的高灵敏度,选择性和动力学分辨率。然而,纳米间隙电极的制造需要广泛的纳米平版印刷术或纳米级电极定位,从而阻止了在电极设计和应用中对这种强大方法的全面探索。本文中,我们报告了具有纳米级间隙的双碳纤维超微电极(UME)的简单制造,不仅有利于基于纳米间隙的电化学测量,而且还可以获得高时间分辨率,信噪比和动力学选择性用于抗坏血酸的多巴胺。具体而言,将直径约7μm的碳纤维插入到双孔玻璃毛细管中,进行热牵拉,然后通过聚焦离子束技术进行研磨,以生产出长度约50μm的双圆柱UME。如实验证明,Ru(NH3)6 3 + / 2 + 对跨伏安发生器和安培集电极之间的纳米间隙的氧化还原循环达到准稳态。甚至达到理论上预测的1000 V / s。与伏安发生器响应的瞬态本底相比,瞬态背景被抑制了约100倍。在不扣除背景的情况下,定量分析了基于收集器对循环发生器电势的响应的纳米间隙伏安图,可重复生成〜0.18μm的纳米间隙宽度和0.9 cm / s的标准电子传输速率常数。此外,纳米间隙介导的氧化还原循环可以通过在发生器电极上进行多巴胺氧化来启动,从而大大提高针对抗坏血酸的捕集剂响应的多巴胺选择性,抗坏血酸也在发生器电极上被氧化,从而立即不可逆地产生氧化还原惰性物质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号