首页> 美国卫生研究院文献>other >Glycinebetaine Biosynthesis in Response to Osmotic Stress Depends on Jasmonate Signaling in Watermelon Suspension Cells
【2h】

Glycinebetaine Biosynthesis in Response to Osmotic Stress Depends on Jasmonate Signaling in Watermelon Suspension Cells

机译:渗透胁迫对甘氨酸甜菜碱生物合成的依赖取决于西瓜悬浮细胞中的茉莉酸酯信号。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Glycinebetaine is an important non-toxic osmoprotectant, which is accumulated in higher plants under various stresses. The biosynthesis of glycinebetaine achieved via is a two-step oxidation from choline and betaine aldehyde, catalyzed by choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH), respectively. Up-regulated gene expression of BADH and CMO induced by stress is clearly observed, but the signal transduction is poorly understood. Here, glycinebetaine accumulation in response to osmotic stress and growth recovery induced by exogenous glycinebetaine were observed in a watermelon cell line. When tracing back to the genome sequence of watermelon, it shows that there exists only one member of ClCMO or ClBADH corresponding to glycinebetaine biosynthesis. Both genes harbor a CGTCA-motif in their promoter region which is involved in methyl jasmonate (MeJA)-responsiveness. Amongst MeJA, Ethephon, abscisic acid (ABA), and salicylic acid (SA), MeJA was most effective in gene inducing the expression of ClCMO and ClBADH, and the accumulation of glycinebetaine could also reach an amount comparable to that after osmotic stress by mannitol. Moreover, when ibuprofen (IBU), a JA biosynthesis inhibitor, was pre-perfused into the cells before osmotic stress, glycinebetaine accumulation was suppressed significantly. Interestingly, newly grown cells can keep a high content of glycinebetaine when they are sub-cultured from osmotic stressed cells. This study suggests that osmotic stress induced glycinebetaine biosynthesis occurs via JA signal transduction and not only plays a key role in osmotic stress resistance but also contributes to osmotic stress hardening.
机译:甘氨酸甜菜碱是一种重要的无毒渗透保护剂,在各种胁迫下会累积在高等植物中。甘氨酸甜菜碱的生物合成是分别由胆碱单加氧酶(CMO)和甜菜碱醛脱氢酶(BADH)催化的胆碱和甜菜碱醛的两步氧化。清楚地观察到了由压力诱导的BADH和CMO的基因表达上调,但是对信号转导的了解却很少。在此,在西瓜细胞系中观察到响应于渗透胁迫的甘氨酸甜菜碱积累和由外源甘氨酸甜菜碱诱导的生长恢复。当追溯到西瓜的基因组序列时,表明仅存在一个与甘氨酸甜菜碱生物合成相对应的ClCMO或ClBADH成员。这两个基因在其启动子区域均带有CGTCA-基序,其与茉莉酸甲酯(MeJA)响应有关。在MeJA,乙烯利,脱落酸(ABA)和水杨酸(SA)中,MeJA对基因诱导ClCMO和ClBADH的表达最有效,甘氨酸甜菜碱的积累也可以达到与甘露醇渗透胁迫后相当的水平。 。此外,当在渗透压之前将JA生物合成抑制剂布洛芬(IBU)预先灌注到细胞中时,甘氨酸甜菜碱的积累被显着抑制。有趣的是,当新细胞从渗透压细胞传代培养时,它们可以保持高含量的甘氨酸甜菜碱。这项研究表明,渗透压诱导的甘氨酸甜菜碱的生物合成是通过JA信号转导发生的,它不仅在渗透压抗性中起关键作用,而且还有助于渗透压的硬化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号