首页> 美国卫生研究院文献>other >Small Force Big Impact: Next Generation Organ-on-a-Chip Systems Incorporating Biomechanical Cues
【2h】

Small Force Big Impact: Next Generation Organ-on-a-Chip Systems Incorporating Biomechanical Cues

机译:小力量大冲击:结合了生物力学线索的下一代单片器官系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mechanobiology-on-a-chip is a growing field focusing on how mechanical inputs modulate physico-chemical output in microphysiological systems. It is well known that biomechanical cues trigger a variety of molecular events and adjustment of mechanical forces is therefore essential for mimicking in vivo physiologies in organ-on-a-chip technology. Biomechanical inputs in organ-on-a-chip systems can range from variations in extracellular matrix type and stiffness and applied shear stresses to active stretch/strain or compression forces using integrated flexible membranes. The main advantages of these organ-on-a-chip systems are therefore (a) the control over spatiotemporal organization of in vivo-like tissue architectures, (b) the ability to precisely control the amount, duration and intensity of the biomechanical stimuli, and (c) the capability of monitoring in real time the effects of applied mechanical forces on cell, tissue and organ functions. Consequently, over the last decade a variety of microfluidic devices have been introduced to recreate physiological microenvironments that also account for the influence of physical forces on biological functions. In this review we present recent advances in mechanobiological lab-on-a-chip systems and report on lessons learned from these current mechanobiological models. Additionally, future developments needed to engineer next-generation physiological and pathological organ-on-a-chip models are discussed.
机译:片上机械生物学是一个不断发展的领域,专注于机械输入如何调节微生理系统中的物理化学输出。众所周知,生物力学提示会触发各种分子事件,因此调节机械力对于模拟单片器官技术中的体内生理至关重要。芯片上器官系统中的生物力学输入的范围从细胞外基质类型和刚度的变化以及施加的剪切应力到使用集成柔性膜的主动拉伸/应变或压缩力。因此,这些单芯片器官系统的主要优点是(a)控制体内类组织结构的时空组织,(b)精确控制生物力学刺激的数量,持续时间和强度的能力, (c)实时监测施加的机械力对细胞,组织和器官功能的影响的能力。因此,在过去的十年中,已经引入了各种微流体装置来重建生理微环境,该生理微环境也考虑了物理力对生物功能的影响。在这篇综述中,我们介绍了机械生物学单芯片实验室系统的最新进展,并报告了从这些当前机械生物学模型中学到的经验教训。此外,还讨论了设计下一代生理和病理芯片上器官模型所需的未来发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号