首页> 美国卫生研究院文献>other >Elevated CO2 Improves Photosynthesis Under High Temperature by Attenuating the Functional Limitations to Energy Fluxes Electron Transport and Redox Homeostasis in Tomato Leaves
【2h】

Elevated CO2 Improves Photosynthesis Under High Temperature by Attenuating the Functional Limitations to Energy Fluxes Electron Transport and Redox Homeostasis in Tomato Leaves

机译:升高的二氧化碳通过减轻番茄叶片能量通量电子传输和氧化还原稳态的功能限制来改善高温下的光合作用。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Elevated atmospheric CO2 improves leaf photosynthesis and plant tolerance to heat stress, however, the underlying mechanisms remain unclear. In this study, we exposed tomato plants to elevated CO2 (800 μmol mol-1) and/or high temperature (42°C for 24 h), and examined a range of photosynthetic and chlorophyll fluorescence parameters as well as cellular redox state to better understand the response of photosystem II (PSII) and PSI to elevated CO2 and heat stress. The results showed that, while the heat stress drastically decreased the net photosynthetic rate (Pn), maximum carboxylation rate (Vcmax), maximum ribulose-1,5-bis-phosphate (RuBP) regeneration rate (Jmax) and maximal photochemical efficiency of PSII (Fv/Fm), the elevated CO2 improved those parameters under heat stress and at a 24 h recovery. Furthermore, the heat stress decreased the absorption flux, trapped energy flux, electron transport, energy dissipation per PSII cross section, while the elevated CO2 had the opposing effects that eventually decreased photoinhibition, damage to photosystems and reactive oxygen species accumulation. Similarly, the elevated CO2 helped the plants to maintain a reduced redox state as evidenced by the increased ratios of ASA:DHA and GSH:GSSG under heat stress and at recovery. Furthermore, the concentration of NADP+ and ratio of NADP+ to NADPH were induced by elevated CO2 at recovery. This study unraveled the crucial mechanisms of elevated CO2-mediated changes in energy fluxes, electron transport and redox homeostasis under heat stress, and shed new light on the responses of tomato plants to combined heat and elevated CO2.
机译:升高的大气CO2可以改善叶片的光合作用和植物对热胁迫的耐受性,但是,其潜在机制仍不清楚。在这项研究中,我们将番茄植株暴露于较高的CO2(800μmolmol -1 )和/或高温下(42°C持续24 h),并检查了一系列光合作用和叶绿素荧光参数以及细胞氧化还原状态,以更好地了解光系统II(PSII)和PSI对升高的CO2和热应激的响应。结果表明,在热胁迫下,PSII的净光合速率(Pn),最大羧化速率(Vcmax),最大核糖-1,5-双磷酸(RuBP)再生速率(Jmax)和最大光化学效率均大大降低。 (Fv / Fm),升高的CO2改善了热应激和恢复24小时后的那些参数。此外,热应力降低了PSII截面的吸收通量,捕获的能量通量,电子传输,能量耗散,而升高的CO2具有相反的作用,最终降低了光抑制作用,对光系统的损害和活性氧的积累。同样,升高的CO2有助于植物维持降低的氧化还原状态,这在高温胁迫和恢复状态下ASA:DHA和GSH:GSSG比例的增加证明了这一点。此外,回收时CO 2浓度升高诱导了NADP + 的浓度和NADP + 与NADPH的比率。这项研究揭示了高温胁迫下CO2介导的能量通量变化,电子传输和氧化还原稳态的关键机制,并为番茄植物对热和CO2浓度升高的响应提供了新的思路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号