首页> 美国卫生研究院文献>other >Integrating 3D Printing and Biomimetic Mineralization for Personalized Enhanced Osteogenesis Angiogenesis and Osteointegration
【2h】

Integrating 3D Printing and Biomimetic Mineralization for Personalized Enhanced Osteogenesis Angiogenesis and Osteointegration

机译:集成3D打印和仿生矿化以个性化增强成骨血管生成和成骨

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Titanium (Ti) alloy implants can repair bone defects at load-bearing sites. However, they mechanically mismatch with the natural bone and lack customized adaption with the irregularly major-sized load-bearing bone defects, resulting in the failure of implant fixation. Mineralized collagen (MC), a building block in bone, can induce angiogenesis and osteogenesis, and 3D printing technology can be employed to prepare scaffolds with an overall shape customized to the bone defect. Hence, we induced the formation of MC, made of hydroxyapatite (HAp) nanocrystals and collagen fibers, in 3D-printed porous Ti6Al4V (PT) scaffolds through in situ biomimetic mineralization. The resultant MC/PT scaffolds exhibited a bone-like Young’s modulus and were customized to the anatomical contour of actual bone defects of rabbit model. We found that the biocompatibility and osteogenic differentiation are best when the mass ratio between HAp nanocrystals and collagen fibers is 1 in MC. We then implanted the MC/PT scaffolds into the customized radius defect rabbit model and found that the MC/PT scaffolds significantly improved the vascularized bone tissue formation and integration between new bone and the implants. Therefore, a combination of 3D printing and biomimetic mineralization could lead to customized 3D PT scaffolds for enhanced angiogenesis, osteogenesis, and osteointegration. Such scaffolds represent novel patient-specific implants for precisely repairing irregular major-sized load-bearing bone defects.
机译:钛(Ti)合金植入物可以修复承重部位的骨缺损。但是,它们在机械上与天然骨不匹配,并且缺乏针对不规则的大型承重骨缺损的定制适应性,导致植入物固定失败。矿化胶原蛋白(MC)是骨骼的组成部分,可以诱导血管生成和成骨,并且可以采用3D打印技术来制备具有针对骨缺损定制的整体形状的支架。因此,我们通过原位仿生矿化在3D打印的多孔Ti6Al4V(PT)支架中诱导了由羟基磷灰石(HAp)纳米晶体和胶原纤维制成的MC的形成。所得的MC / PT支架表现出类似骨骼的杨氏模量,并根据兔子模型的实际骨骼缺损的解剖轮廓进行了定制。我们发现,当MC中HAp纳米晶体与胶原纤维的质量比为1时,生物相容性和成骨分化效果最佳。然后,我们将MC / PT支架植入定制的radius骨缺损兔模型中,发现MC / PT支架显着改善了血管化骨组织的形成以及新骨与植入物之间的整合。因此,将3D打印和仿生矿化相结合可以产生定制的3D PT支架,以增强血管生成,成骨作用和骨整合。这样的支架代表了新的患者专用植入物,用于精确修复不规则的大型承重骨缺损。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号