首页> 美国卫生研究院文献>other >Microchip based Electrophoretic Separations with a Pressure-driven Backflow
【2h】

Microchip based Electrophoretic Separations with a Pressure-driven Backflow

机译:基于微芯片的电泳分离压力驱动回流

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is well known that the resolving power of capillary zone electrophoretic separations may be improved with an increase in the applied electric field strength and separation time. While large electric fields may be realized in short analysis channels commonly employed in microfluidic systems, this experimental design in not suitable for achieving long separation times. In this chapter, we describe the use of a steady and/or a periodic pressure-driven backflow to increase the separation time in short microchannels thereby enabling the analysis of closely-related species on microchip devices. The reported backflow was realized in our assays using an on-chip pressure-generation capability that relied on the partial blockage of electroosmotic flow around a junction of two glass channel segments having different depths. Although the noted strategy led to additional band broadening in the system, the resolving power of our device was observed to substantially improve upon introduction of the reported steady/periodic pressure-driven backflow for analysis channels shallower than 5 μm.
机译:众所周知,随着施加电场强度和分离时间的增加,可以改善毛细管区带电泳分离的分辨能力。虽然可以在微流体系统中通常使用的短分析通道中实现大电场,但该实验设计不适合实现长分离时间。在本章中,我们描述了使用稳定的和/或周期性的压力驱动的回流来增加短微通道中的分离时间,从而能够分析微芯片设备上密切相关的物种。所报告的回流是在我们的测定中使用片上压力生成功能实现的,该功能依赖于围绕具有不同深度的两个玻璃通道段的接合处的电渗流的部分阻塞。尽管已指出的策略导致了系统中更多的带宽扩展,但是在引入小于5μm的分析通道的稳态/周期性压力驱动回流时,我们的设备的分辨能力得到了显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号