首页> 美国卫生研究院文献>other >Triggered disassembly and reassembly of actin networks induces rigidity phase transitions
【2h】

Triggered disassembly and reassembly of actin networks induces rigidity phase transitions

机译:肌动蛋白网络的触发拆卸和重组引发刚性相变

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Non-equilibrium soft materials, such as networks of actin proteins, have been intensely investigated over the past decade due to their promise for designing smart materials and understanding cell mechanics. However, current methods are unable to measure the time-dependent mechanics of such systems or map mechanics to the corresponding dynamic macromolecular properties. Here, we present an experimental approach that combines time-resolved optical tweezers microrheology with diffusion-controlled microfluidics to measure the time-evolution of microscale mechanical properties of dynamic systems during triggered activity. We use these methods to measure the viscoelastic moduli of entangled and crosslinked actin networks during chemically-triggered depolymerization and repolymerization of actin filaments. During disassembly, we find that the moduli exhibit two distinct exponential decays, with experimental time constants of ~169 min and ~47 min. Conversely, during reassembly, measured moduli initially exhibit power-law increase with time, after which steady-state values are achieved. We develop toy mathematical models that couple the time-evolution of filament lengths with rigidity percolation theory to shed light onto the molecular mechanisms underlying the observed mechanical transitions. The models suggest that these two distinct behaviors both arise from phase transitions between a rigidly percolated network and a non-rigid regime. Our approach and collective results can inform the general principles underlying the mechanics of a large class of dynamic, non-equilibrium systems and materials of current interest.
机译:过去十年来,肌动蛋白蛋白质网络等非平衡软材料受到了广泛的研究,因为它们有望设计出智能材料并了解细胞力学。但是,当前的方法无法测量这种系统的时间依赖性力学或将力学映射到相应的动态大分子性质。在这里,我们提出了一种实验方法,该方法将时间分辨的光镊微流变学与扩散控制的微流体相结合,以测量触发活动期间动态系统的微尺度机械性能的时间演化。我们使用这些方法来测量肌动蛋白丝的化学触发解聚和再聚合过程中纠缠和交联的肌动蛋白网络的粘弹性模量。在拆卸过程中,我们发现模量表现出两个不同的指数衰减,实验时间常数分别为〜169分钟和〜47分钟。相反,在重新组装期间,测得的模量最初显示出随时间变化的幂律,此后达到稳态值。我们开发了玩具数学模型,该模型将细丝长度的时间演变与刚度渗滤理论相结合,以阐明观察到的机械转变的分子机理。这些模型表明,这两种截然不同的行为均源于刚性渗透网络与非刚性体系之间的相变。我们的方法和总体结果可以为当前感兴趣的大量动态,非平衡系统和材料的力学原理提供通用原理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号