首页> 美国卫生研究院文献>other >An experimental method to directly measure DQE(k) at k = 0 for 2D x-ray imaging systems
【2h】

An experimental method to directly measure DQE(k) at k = 0 for 2D x-ray imaging systems

机译:直接测量二维X射线成像系统在k = 0时DQE(k)的实验方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The zero-frequency detective quantum efficiency (DQE), viz., DQE0, is defined as the ratio between output and input squared signal-to-noise ratio of an imaging system. In 1963, R. Shaw applied Fourier analysis to generalize DQE0 to the frequency-dependent DQE, i.e. DQE(k). Under conditions specified by Shaw, DQE(k) is the same as DQE0 at k = 0. The experimental measurement of DQE(k) involves the measurement of system modulation transfer function (MTF) and noise power spectrum (NPS). Although the measurement of MTF is straightforward, the experimental measurements of NPS(k) encountered several challenges. As a result, some experimental methods may yield a nonphysical NPS value at k = 0, which makes the measured DQE(k)|k=0 deviate from the true zero- frequency DQE. This work presents new results from three aspects: 1) system drift is a significant error source when a large number of independent image acquisitions are involved in measuring NPS and DQE; 2) a cascaded systems analysis shows that the drift induces a global positive offset to the measured autocovariance function, and the offset is quantitatively related to the NPS error at k = 0; 3) based on the measured autocovariance data, drift-induced offset can be estimated, so that errors in the measured NPS(k)|k=0 and DQE(k)|k=0 can be corrected. Both numerical simulations with known ground truth for DQE0 and experimental studies were performed to validate the proposed measurement method. The results demonstrated that the method mitigates the undesirable influence of system drift in DQE(k)|k=0 and DQE0, allowing the measured values consistent with the classical definition of zero-frequency DQE.
机译:零频率检测量子效率(DQE),即DQE0,定义为成像系统的输出和输入平方信噪比之间的比率。 1963年,R。Shaw应用傅立叶分析将DQE0推广到与频率相关的DQE,即DQE(k)。在Shaw指定的条件下,在k = 0时DQE(k)与DQE0相同。DQE(k)的实验测量涉及系统调制传递函数(MTF)和噪声功率谱(NPS)的测量。尽管MTF的测量很简单,但是NPS(k)的实验测量却遇到了一些挑战。结果,一些实验方法可能会在k = 0时产生非物理NPS值,这会使测得的DQE(k)| k = 0偏离真实的零频DQE。这项工作从三个方面提出了新的结果:1)当测量NPS和DQE涉及大量独立图像采集时,系统漂移是一个重要的误差源; 2)级联系统分析表明,该漂移会导致对测得的自协方差函数产生整体正偏移,并且该偏移与k = 0时的NPS误差定量相关; 3)基于测量的自协方差数据,可以估计漂移引起的偏移,从而可以校正测量的NPS(k)| k = 0和DQE(k)| k = 0中的误差。进行了具有DQE0已知地面真实性的数值模拟和实验研究,以验证所提出的测量方法。结果表明,该方法减轻了DQE(k)| k = 0和DQE0中系统漂移的不良影响,从而使测量值与零频率DQE的经典定义相一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号