首页> 美国卫生研究院文献>other >Biosynthesis of the Nematode Attractant 2-Heptanone and Its Co-evolution Between the Pathogenic Bacterium Bacillus nematocida and Non-pathogenic Bacterium Bacillus subtilis
【2h】

Biosynthesis of the Nematode Attractant 2-Heptanone and Its Co-evolution Between the Pathogenic Bacterium Bacillus nematocida and Non-pathogenic Bacterium Bacillus subtilis

机译:线虫吸引剂2-庚酮的生物合成及其在致病性细菌线虫杆菌和非致病性细菌枯草芽孢杆菌之间的协同进化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Methylketones are broadly distributed in nature and perform a variety of functions. Most microorganisms are thought to produce methylketone by abortive β-oxidation of fatty acid catalytic metabolism. However, two methylketone synthetase genes in wild tomatoes are reported to synthesize methylketone using intermediates of the fatty acids biosynthetic pathway. In our previous study on Trojan horse-like interactions between the bacterium Bacillus nematocida B16 and its host worm, the chemical 2-heptanone was found to be an important attractant for the hosts. So here we used this model to investigate the genes involved in synthesizing 2-heptanone in microorganisms. We identified a novel methylketone synthase gene yneP in B. nematocida B16 and found enhancement of de novo fatty acid synthesis during 2-heptanone production. Interestingly, a homolog of yneP’ existed in the non-pathogenic species Bacillus subtilis 168, a close relative of B. nematocida B16 that was unable to lure worms, but GC-MS assay showed no 2-heptanone production. However, overexpression of yneP’ from B. subtilis in both heterologous and homologous systems demonstrated that it was not a pseudogene. The transcriptional analysis between those two genes had few differences under the same conditions. It was further shown that the failure to detect 2-heptanone in B. subtilis 168 was at least partly due to its conversion into 6-methyl-2-heptanone by methylation. Our study revealed methylketone biosynthesis of Bacillus species, and provided a co-evolution paradigm of second metabolites during the interactions between pathogenicon-pathogenic bacteria and host.
机译:甲基酮在自然界广泛分布,并具有多种功能。认为大多数微生物通过脂肪酸催化代谢的流产β-氧化产生甲基酮。然而,据报道,野生番茄中的两个甲基酮合成酶基因利用脂肪酸生物合成途径的中间体来合成甲基酮。在我们先前对线虫杆菌B16细菌与其宿主蠕虫之间的特洛伊木马式相互作用的研究中,发现化学2-庚酮对宿主很重要。因此,在这里我们使用该模型研究了微生物中参与合成2-庚酮的基因。我们在线虫B16中鉴定了一个新的甲基酮合酶基因yneP,发现2-庚酮生产过程中从头脂肪酸合成的增强。有趣的是,在非致病性枯草芽孢杆菌168中存在yneP’的同系物,枯草芽孢杆菌B16的近亲无法诱引蠕虫,但GC-MS分析表明没有2-庚酮产生。但是,异源和同源系统中枯草芽孢杆菌的yneP’均过表达证明它不是假基因。在相同条件下,这两个基因之间的转录分析几乎没有差异。进一步表明,未能在枯草芽孢杆菌168中检测到2-庚酮至少部分是由于其通过甲基化转化为6-甲基-2-庚酮。我们的研究揭示了芽孢杆菌种的甲基酮生物合成,并在致病性/非致病性细菌与宿主之间的相互作用过程中提供了第二种代谢产物的共同进化范例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号