首页> 美国卫生研究院文献>The Journal of General Physiology >Impact of signaling microcompartment geometry on GPCR dynamics in live retinal photoreceptors
【2h】

Impact of signaling microcompartment geometry on GPCR dynamics in live retinal photoreceptors

机译:信号微区室几何形状对活视网膜感光细胞GPCR动态的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

G protein–coupled receptor (GPCR) cascades rely on membrane protein diffusion for signaling and are generally found in spatially constrained subcellular microcompartments. How the geometry of these microcompartments impacts cascade activities, however, is not understood, primarily because of the inability of current live cell–imaging technologies to resolve these small structures. Here, we examine the dynamics of the GPCR rhodopsin within discrete signaling microcompartments of live photoreceptors using a novel high resolution approach. Rhodopsin fused to green fluorescent protein variants, either enhanced green fluorescent protein (EGFP) or the photoactivatable PAGFP (Rho-E/PAGFP), was expressed transgenically in Xenopus laevis rod photoreceptors, and the geometries of light signaling microcompartments formed by lamellar disc membranes and their incisure clefts were resolved by confocal imaging. Multiphoton fluorescence relaxation after photoconversion experiments were then performed with a Ti–sapphire laser focused to the diffraction limit, which produced small sub–cubic micrometer volumes of photoconverted molecules within the discrete microcompartments. A model of molecular diffusion was developed that allows the geometry of the particular compartment being examined to be specified. This was used to interpret the experimental results. Using this unique approach, we showed that rhodopsin mobility across the disc surface was highly heterogeneous. The overall relaxation of Rho-PAGFP fluorescence photoactivated within a microcompartment was biphasic, with a fast phase lasting several seconds and a slow phase of variable duration that required up to several minutes to reach equilibrium. Local Rho-EGFP diffusion within defined compartments was monotonic, however, with an effective lateral diffusion coefficient Dlat = 0.130 ± 0.012 µm2s−1. Comparison of rhodopsin-PAGFP relaxation time courses with model predictions revealed that microcompartment geometry alone may explain both fast local rhodopsin diffusion and its slow equilibration across the greater disc membrane. Our approach has for the first time allowed direct examination of GPCR dynamics within a live cell signaling microcompartment and a quantitative assessment of the impact of compartment geometry on GPCR activity.
机译:G蛋白偶联受体(GPCR)级联依赖于膜蛋白扩散来传递信号,通常在空间受限的亚细胞微区室中发现。然而,这些微隔室的几何形状如何影响级联活动尚不清楚,这主要是因为当前的活细胞成像技术无法解决这些小结构。在这里,我们使用一种新型的高分辨率方法,检查了活的感光细胞的离散信号微区中GPCR视紫红质的动力学。与绿色荧光蛋白变体(增强的绿色荧光蛋白(EGFP)或可光活化的PAGFP(Rho-E / PAGFP))融合的视紫红质在非洲爪蟾杆状光感受器中转基因表达,并且由层状盘膜和通过共聚焦成像解决了他们的ci裂。然后用聚焦于衍射极限的钛蓝宝石激光进行光转换实验后的多光子荧光弛豫,这在离散的微隔室内产生了亚立方微米的小体积的光转换分子。建立了分子扩散模型,可以确定要检查的特定隔室的几何形状。这被用来解释实验结果。使用这种独特的方法,我们证明了视紫红质在整个磁盘表面上的流动性是高度异质的。在微隔室内被光活化的Rho-PAGFP荧光的总体弛豫是双相的,快相持续数秒,而慢相持续时间可变,需要长达数分钟才能达到平衡。 Rho-EGFP在确定隔室内的局部扩散是单调的,但有效横向扩散系数Dlat = 0.130±0.012 µm 2 s -1 。视紫红质-PAGFP弛豫时间过程与模型预测的比较表明,仅微隔室的几何形状可以解释局部视紫红质的快速扩散及其在较大椎间盘膜上的缓慢平衡。我们的方法首次允许直接检查活细胞信号传递微隔室内的GPCR动态,并定量评估隔室几何形状对GPCR活性的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号