首页> 美国卫生研究院文献>Nanoscale Research Letters >Alternating Magnetic Field Controlled Multifunctional Nano-Reservoirs: Intracellular Uptake and Improved Biocompatibility
【2h】

Alternating Magnetic Field Controlled Multifunctional Nano-Reservoirs: Intracellular Uptake and Improved Biocompatibility

机译:交变磁场控制的多功能纳米储库:细胞内吸收和改善的生物相容性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biocompatible magnetic nanoparticles hold great therapeutic potential, but conventional particles can be toxic. Here, we report the synthesis and alternating magnetic field dependent actuation of a remotely controllable, multifunctional nano-scale system and its marked biocompatibility with mammalian cells. Monodisperse, magnetic nanospheres based on thermo-sensitive polymer network poly(ethylene glycol) ethyl ether methacrylate-co-poly(ethylene glycol) methyl ether methacrylate were synthesized using free radical polymerization. Synthesized nanospheres have oscillating magnetic field induced thermo-reversible behavior; exhibiting desirable characteristics comparable to the widely used poly-N-isopropylacrylamide-based systems in shrinkage plus a broader volumetric transition range. Remote heating and model drug release were characterized for different field strengths. Nanospheres containing nanoparticles up to an iron concentration of 6 mM were readily taken up by neuron-like PC12 pheochromocytoma cells and had reduced toxicity compared to other surface modified magnetic nanocarriers. Furthermore, nanosphere exposure did not inhibit the extension of cellular processes (neurite outgrowth) even at high iron concentrations (6 mM), indicating minimal negative effects in cellular systems. Excellent intracellular uptake and enhanced biocompatibility coupled with the lack of deleterious effects on neurite outgrowth and prior Food and Drug Administration (FDA) approval of PEG-based carriers suggest increased therapeutic potential of this system for manipulating axon regeneration following nervous system injury.
机译:生物相容性磁性纳米粒子具有巨大的治疗潜力,但常规粒子可能具有毒性。在这里,我们报告了一个可远程控制的多功能纳米级系统的合成和交变磁场依赖性驱动及其与哺乳动物细胞的显着生物相容性。利用自由基聚合法合成了基于热敏聚合物网络的聚甲基丙烯酸乙二醇酯-共聚乙二醇甲基丙烯酸甲酯的单分散磁性纳米球。合成的纳米球具有振荡磁场引起的热可逆行为。在收缩率和更宽的体积转变范围方面,具有与广泛使用的基于聚N-异丙基丙烯酰胺的体系相当的理想特性。针对不同的场强对远程加热和模型药物释放进行了表征。含有高达6 mM铁浓度的纳米粒子的纳米球很容易被神经元样PC12嗜铬细胞瘤细胞吸收,并且与其他表面修饰的磁性纳米载体相比,毒性降低了。此外,即使在高铁浓度(6 mM)下,纳米球暴露也不会抑制细胞过程的扩展(神经突生长),这表明细胞系统中的负面影响极小。出色的细胞内摄取和增强的生物相容性,加上对神经突生长没有有害作用,并且基于PEG的载体已获得美国食品和药物管理局(FDA)的批准,这表明该系统可用于治疗神经系统损伤后轴突再生的治疗潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号