首页> 美国卫生研究院文献>Journal of Insect Science >Octopaminergic agonists for the cockroach neuronal octopamine receptor
【2h】

Octopaminergic agonists for the cockroach neuronal octopamine receptor

机译:蟑螂神经元章鱼胺受体的八胺能激动剂

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The compounds 1-(2,6-diethylphenyl)imidazolidine-2-thione and 2-(2,6-diethylphenyl)imidazolidine showed the almost same activity as octopamine in stimulating adenylate cyclase of cockroach thoracic nervous system among 70 octopamine agonists, suggesting that only these compounds are full octopamine agonists and other compounds are partial octopamine agonists. The quantitative structure-activity relationship of a set of 22 octopamine agonists against receptor 2 in cockroach nervous tissue, was analyzed using receptor surface modeling. Three-dimensional energetics descriptors were calculated from receptor surface model/ligand interaction and these three-dimensional descriptors were used in quantitative structure-activity relationship analysis. A receptor surface model was generated using some subset of the most active structures and the results provided useful information in the characterization and differentiation of octopaminergic receptor.
>Abbreviation:
>
AEA
arylethanolamine
AII
2-(arylimino)imidazolidine
AIO
2-(arylimino)oxazolidine
AIT
2-(arylimino)thiazolidine
APAT
2-(α-phenylethylamino)-2-thiazoline
BPAT
2-(β-phenylethylamino)-2-thiazoline
CAO
2-(3-chlorobenzylamino)-2-oxazoline
DCAO
2-(3,5-dichlorobenzylamino)-2-oxazoline
DET5
2-(2,6-diethylphenylimino)-5-methylthiazolidine
DET6
2-(2,6-diethylphenylimino)thiazine
EGTA
ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid
GFA
genetic function approximation
G/PLS
genetic partial least squares
IND
2-aminomethyl-2-indanol
LAH
lithium aluminum hydride
MCSG
maximum common subgroup
MCT6
2-(2-methyl-4-chlorophenylimino)thiazine
OA
octopamine
PLS
partial least squares
QSAR
quantitative structure-activity relationship
SBAT
2-(substituted benzylamino)-2-thiazoline
SD
the sum of squared deviations of the dependent variable values from their mean
SPIT
3-(substituted phenyl)imidazolidine-2-thione
THI
2-amino-1-(2-thiazoyl)ethanol
TMS
tetramethyl silane
class="kwd-title">Keywords: Periplaneta americana, receptor surface model, cerius2, octopamine agonist class="head no_bottom_margin" id="s1title" style="text-transform: uppercase;">IntroductionOctopamine [2-amino-1-(4-hydroxyphenyl)ethanol] which has been found to be present in high concentrations in various insect tissues, is the monohydroxyllic analogue of the vertebrate hormone noradrenalin. Octopamine was first discovered in the salivary glands of the octopus by . It has been found that octopamine is present at a high concentrations in various invertebrate tissues (). This multifunctional and naturally occurring biogenic amine has been well studied and established as 1) a neurotransmitter, controlling the firefly light organ and endocrine gland activity in other insects; 2) a neurohormone, inducing mobilization of lipids and carbohydrates; 3) a neuromodulator, acting peripherally on muscles, fat body, corpora cardiaca and the corpora allata, and 4) a centrally acting neuromodulator, influencing motor patterns, habituation and even memory in various invertebrate species (, ). The action of octopamine is mediated through various receptor classes. Three different receptor classes OAR1, OAR2A and OAR2B have been distinguished from non-neuronal tissues (). OAR2 is coupled to G-proteins and is specifically linked to an adenylate cyclase. Thus, the physiological actions of OAR2 have been shown to be associated with elevated levels of cAMP (). In the nervous system of the locust, Locusta migratoria, a particular receptor class was characterized and established as a new class OAR3 by pharmacological investigations of the [3H]OA binding site using various agonists and antagonists (, , ; ; ).Recently much attention has been directed at the octopamine agonist as a valid target in the development of safer and selective pesticides (; ; ). Structure-activity studies of various types of octopamine agonists and antagonists were also reported using the nervous tissue of the migratory locust, L. migratoria (, , href="#i1536-2442-003-10-0001-roeder3" rid="i1536-2442-003-10-0001-roeder3" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_96699086">1995; href="#i1536-2442-003-10-0001-roeder4" rid="i1536-2442-003-10-0001-roeder4" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_96699083">Roeder and Gewecke, 1990; href="#i1536-2442-003-10-0001-roeder5" rid="i1536-2442-003-10-0001-roeder5" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_96699094">Roeder and Nathanson, 1993). However, information on the structural requirements of these octopamine agonists and antagonists for high octopamine-receptor ligands is still limited. It is therefore of critical importance to provide information on the pharmacological properties of octopamine receptor types and subtypes. Our interest in octopaminergic agonists was aroused by the results of quantitative structure-activity relationship (QSAR) studies using various physicochemical parameters as descriptors (href="#i1536-2442-003-10-0001-hirashima12" rid="i1536-2442-003-10-0001-hirashima12" class=" bibr popnode">Hirashima et al., 1999a; href="#i1536-2442-003-10-0001-pan2" rid="i1536-2442-003-10-0001-pan2" class=" bibr popnode">Pan et al., 1997a) and receptor surface modeling (href="#i1536-2442-003-10-0001-hirashima9" rid="i1536-2442-003-10-0001-hirashima9" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_328530610">Hirashima et al., 1998a). Furthermore, molecular modeling and conformational analyses were performed in Catalyst/Hypo to gain a better understanding of the interactions between octopaminergic antagonists and OAR3 in order to determine the conformations required for binding activity (href="#i1536-2442-003-10-0001-pan1" rid="i1536-2442-003-10-0001-pan1" class=" bibr popnode">Pan et al., 1997b). A similar procedure was repeated using octopamine agonists (href="#i1536-2442-003-10-0001-hirashima7" rid="i1536-2442-003-10-0001-hirashima7" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_328530614">Hirashima et al., 1999b). However, binding activity is not enough for evaluating octopamine-agonist activity, because it is difficult to determine the different activities of octopamine agonists and antagonists. In drug discovery, it is common to have measured activity data for a set of compounds acting upon a particular protein but not to have knowledge of the three-dimensional structure of the protein active site. In the absence of such three-dimensional information, one can attempt to build a hypothetical model of the receptor site that can provide insight about receptor site characteristics. Such a model is known as a receptor surface model, which provides compact and quantitative descriptors that capture three-dimensional information about a putative receptor site. Thus, the current work is aimed to perform 3D receptor surface modeling on a set of octopamine agonists using the thoracic nervous system of the American cockroach, Periplaneta americana, in which octopamine-agonist action is thought to be due to cAMP elevation at OAR2 (href="#i1536-2442-003-10-0001-hirashima14" rid="i1536-2442-003-10-0001-hirashima14" class=" bibr popnode">Hirashima et al., 1992).
机译:化合物1-(2,6-二乙基苯基)咪唑烷-2-硫酮和2-(2,6-二乙基苯基)咪唑烷在刺激70名章鱼胺激动剂中的蟑螂胸神经系统腺苷酸环化酶方面显示出与章鱼胺几乎相同的活性。只有这些化合物是完全的章鱼胺激动剂,而其他化合物是部分章鱼胺激动剂。使用受体表面模型分析了一组22种章鱼胺激动剂对蟑螂神经组织中受体2的定量构效关系。从受体表面模型/配体相互作用计算三维能量学描述符,并将这些三维描述符用于定量构效关系分析。受体表面模型是使用最活跃的结构的一些子集生成的,其结果为章鱼胺能受体的表征和分化提供了有用的信息。
>缩写:
> AEA
芳基乙醇胺 AII
2-(arylimino )咪唑烷 AIO
2-(芳基)恶唑烷 AIT
2-(芳基)噻唑烷
APAT
2-(α-苯基乙基氨基)-2-噻唑啉 BPAT
2-(β-苯基乙基氨基)-2-噻唑啉 CAO
2-(3-氯苄基氨基)-2-恶唑啉 DCAO
2-(3,5-二氯苄基氨基)-2-恶唑啉 DET5
2-(2,6-二乙基苯基亚氨基)-5-甲基噻唑烷 DET6
2-(2,6-二乙基苯基亚氨基)噻嗪 EGTA
乙二醇双(β-氨基乙基醚)-N,N,N',N'-四乙酸 GFA
遗传函数逼近 G / PLS
遗传偏最小二乘法 IND
2-氨基甲基-2-茚满醇 LAH
氢化铝锂 MCSG
最大共同亚组 MCT6
2-(2-甲基-4-氯苯基亚氨基)噻嗪 OA
章鱼胺 PLS
偏最小二乘 QSAR
定量构效关系 SBAT
2 -(取代的苄基氨基)-2-噻唑啉 SD
因变量值与其平均值的偏差的平方偏差之和 SPIT < dd> 3-(取代的苯基)咪唑烷-2-硫酮 THI
2-氨基-1-(2-噻唑基)乙醇 TMS
四甲基硅烷 class =“ kwd-title”>关键字:美洲P,受体表面模型,cerius2,章鱼胺激动剂 class =“ head no_bottom_margin” id =“ s1title” style =“ text-transform:uppercase;”>引言八氯胺[2-氨基-1-(4-羟苯基)乙醇]已发现在各种昆虫组织中含量很高。 s,是脊椎动物激素去甲肾上腺素的单羟基类似物。章鱼首先是在章鱼的唾液腺中发现的。已经发现章鱼胺以高浓度存在于各种无脊椎动物组织中。这种多功能的天然存在的生物胺已被充分研究并确定为:1)神经递质,控制萤火虫的光器官和其他昆虫的内分泌腺活性; 2)神经激素,诱导脂质和碳水化合物的动员; 3)一种神经调节剂,作用于肌肉,脂肪,心cardiac体和主体上的外周,和4)一种中枢作用的神经调节剂,影响各种无脊椎动物物种的运动模式,习惯甚至记忆。章鱼胺的作用是通过各种受体类型介导的。三种不同的受体类别OAR1,OAR2A和OAR2B与非神经元组织有所区别。 OAR2偶联至G蛋白,并特异性连接至腺苷酸环化酶。因此,已表明OAR2的生理作用与cAMP()的升高水平有关。在蝗虫的神经系统中,通过使用多种激动剂和拮抗剂对[ 3 H] OA结合位点进行药理研究,将特定的受体类别定性为新的OAR3类,并将其建立为新的OAR3类。 ,;;)。近来,注意力集中在作为更安全和选择性农药开发的有效靶点的章鱼胺激动剂上。还报道了使用迁移蝗L. migratoria(“ href =”#i1536-2442-003-10-0001-roeder3“ rid =的神经组织的各种类型的章鱼胺激动剂和拮抗剂的结构活性研究“ i1536-2442-003-10-0001-roeder3” class =“ bibr popnode tag_hotlink tag_tooltip” id =“ __ tag_96699086”> 1995 ; href =“#i1536-2442-003-10-0001-roeder4 “ rid =” i1536-2442-003-10-0001-roeder4“ class =” bibr popnode tag_hotlink tag_tooltip“ id =” __ tag_96699083“> Roeder和Gewecke,1990 ; href="#i1536-2442-003-10-0001-roeder5" rid="i1536-2442-003-10-0001-roeder5" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_96699094"> Roeder和Nathanson ,1993 )。但是,关于这些章鱼胺激动剂和拮抗剂对章鱼胺高受体配体的结构要求的信息仍然有限。因此,提供有关章鱼胺受体类型和亚型的药理特性的信息至关重要。使用各种物理化学参数作为描述符的定量结构-活性关系(QSAR)研究结果引起了我们对八胺能激动剂的兴趣(href =“#i1536-2442-003-10-0001-hirashima12” rid =“ i1536- 2442-003-10-0001-hirashima12“ class =” bibr popnode“> Hirashima et al。,1999a ; href =”#i1536-2442-003-10-0001-pan2“ rid =” i1536 -2442-003-10-0001-pan2“ class =” bibr popnode“> Pan等人,1997a )和受体表面建模(href =”#i1536-2442-003-10-0001- hirashima9“ rid =” i1536-2442-003-10-0001-hirashima9“ class =” bibr popnode tag_hotlink tag_tooltip“ id =” __ tag_328530610“> Hirashima等人,1998a )。此外,在Catalyst / Hypo中进行了分子建模和构象分析,以更好地了解章胺能拮抗剂与OAR3之间的相互作用,从而确定结合活性所需的构象(href =“#i1536-2442-003-10 -0001-pan1“ rid =” i1536-2442-003-10-0001-pan1“ class =” bibr popnode“> Pan等,1997b )。使用章鱼胺激动剂(href =“#i1536-2442-003-10-0001-hirashima7” rid =“ i1536-2442-003-10-0001-hirashima7” class =“ bibr popnode tag_hotlink tag_tooltip” id =“ __ tag_328530614”> Hirashima等,1999b )。然而,结合活性不足以评估章鱼胺激动剂的活性,因为难以确定章鱼胺激动剂和拮抗剂的不同活性。在药物开发中,通常需要测量一组作用于特定蛋白质的化合物的活性数据,但不了解蛋白质活性位点的三维结构。在没有此类三维信息的情况下,人们可以尝试建立一种受体位点的假设模型,该模型可以提供有关受体位点特征的见解。这种模型称为受体表面模型,它提供了紧凑且定量的描述符,可以捕获有关假定受体位点的三维信息。因此,目前的工作旨在使用美洲蟑螂美洲胸plane的胸神经系统对一组章鱼胺激动剂进行3D受体表面建模,其中章鱼胺激动剂作用被认为是由于OAR2处cAMP升高引起的(< a href =“#i1536-2442-003-10-0001-hirashima14” rid =“ i1536-2442-003-10-0001-hirashima14” class =“ bibr popnode”> Hirashima等,1992 ) 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号