首页> 美国卫生研究院文献>Ecology and Evolution >Weak coordination among petiole leaf vein and gas‐exchange traits across Australian angiosperm species and its possible implications
【2h】

Weak coordination among petiole leaf vein and gas‐exchange traits across Australian angiosperm species and its possible implications

机译:澳大利亚被子植物物种的叶柄叶片静脉和气体交换性状之间的协调性较弱及其可能的含义

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Close coordination between leaf gas exchange and maximal hydraulic supply has been reported across diverse plant life forms. However, it has also been suggested that this relationship may become weak or break down completely within the angiosperms. We examined coordination between hydraulic, leaf vein, and gas‐exchange traits across a diverse group of 35 evergreen Australian angiosperms, spanning a large range in leaf structure and habitat. Leaf‐specific conductance was calculated from petiole vessel anatomy and was also measured directly using the rehydration technique. Leaf vein density (thought to be a determinant of gas exchange rate), maximal stomatal conductance, and net CO 2 assimilation rate were also measured for most species (n = 19–35). Vein density was not correlated with leaf‐specific conductance (either calculated or measured), stomatal conductance, nor maximal net CO 2 assimilation, with r 2 values ranging from 0.00 to 0.11, P values from 0.909 to 0.102, and n values from 19 to 35 in all cases. Leaf‐specific conductance calculated from petiole anatomy was weakly correlated with maximal stomatal conductance (r 2 = 0.16; P = 0.022; n = 32), whereas the direct measurement of leaf‐specific conductance was weakly correlated with net maximal CO 2 assimilation (r 2 = 0.21; P = 0.005; n = 35). Calculated leaf‐specific conductance, xylem ultrastructure, and leaf vein density do not appear to be reliable proxy traits for assessing differences in rates of gas exchange or growth across diverse sets of evergreen angiosperms.
机译:据报道,在不同的植物生命形式中,叶片气体交换与最大液压供应之间存在密切的协调关系。但是,也有人建议这种关系可能在被子植物内变得微弱或完全破裂。我们研究了由35个常绿的澳大利亚被子植物组成的一组中的水力,叶脉和气体交换性状之间的协调性,这些植物分布在很大的叶片结构和生境中。根据叶柄血管解剖计算出叶特异性电导率,也可以使用补液技术直接测量。对大多数物种(n = 19-35)也测量了叶脉密度(被认为是气体交换率的决定因素),最大气孔导度和净CO 2同化率。静脉密度与叶片特异性电导率(无论是计算还是测量的),气孔电导率或最大净CO 2同化无关,r 2 的值在0.00到0.11之间,P值在0.909到0.102之间,并且在所有情况下n的值都在19到35之间。根据叶柄解剖学计算的叶片特异性电导与最大气孔导度弱相关(r 2 = 0.16; P = 0.022; n = 32),而直接测量叶片特异性电导与净最大CO 2同化(r 2 = 0.21; P = 0.005; n = 35)。计算不同常绿被子植物之间气体交换或生长速率差异的计算得出的叶特异性电导率,木质部超微结构和叶静脉密度似乎不是可靠的替代特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号