首页> 美国卫生研究院文献>Advanced Science >Remarkable Enhancement of the Hole Mobility in Several Organic Small‐Molecules Polymers and Small‐Molecule:Polymer Blend Transistors by Simple Admixing of the Lewis Acid p‐Dopant B(C6F5)3
【2h】

Remarkable Enhancement of the Hole Mobility in Several Organic Small‐Molecules Polymers and Small‐Molecule:Polymer Blend Transistors by Simple Admixing of the Lewis Acid p‐Dopant B(C6F5)3

机译:通过简单混合路易斯酸p-掺杂剂B(C6F5)3几种有机小分子聚合物和小分子:聚合物共混晶体管的空穴迁移率显着提高。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Improving the charge carrier mobility of solution‐processable organic semiconductors is critical for the development of advanced organic thin‐film transistors and their application in the emerging sector of printed electronics. Here, a simple method is reported for enhancing the hole mobility in a wide range of organic semiconductors, including small‐molecules, polymers, and small‐molecule:polymer blends, with the latter systems exhibiting the highest mobility. The method is simple and relies on admixing of the molecular Lewis acid B(C6F5)3 in the semiconductor formulation prior to solution deposition. Two prototypical semiconductors where B(C6F5)3 is shown to have a remarkable impact are the blends of 2,8‐difluoro‐5,11‐bis(triethylsilylethynyl)anthradithiophene:poly(triarylamine) (diF‐TESADT:PTAA) and 2,7‐dioctyl[1]‐benzothieno[3,2‐b][1]benzothiophene:poly(indacenodithiophene‐co‐benzothiadiazole) (C8‐BTBT:C16‐IDTBT), for which hole mobilities of 8 and 11 cm2 V−1 s−1, respectively, are obtained. Doping of the 6,13‐bis(triisopropylsilylethynyl)pentacene:PTAA blend with B(C6F5)3 is also shown to increase the maximum hole mobility to 3.7 cm2 V−1 s−1. Analysis of the single and multicomponent materials reveals that B(C6F5)3 plays a dual role, first acting as an efficient p‐dopant, and secondly as a microstructure modifier. Semiconductors that undergo simultaneous p‐doping and dopant‐induced long‐range crystallization are found to consistently outperform transistors based on the pristine materials. Our work underscores Lewis acid doping as a generic strategy towards high performance printed organic microelectronics.
机译:改善可溶液处理的有机半导体的电荷载流子迁移率对于先进的有机薄膜晶体管的开发及其在新兴的印刷电子领域的应用至关重要。在这里,据报道有一种简单的方法可以增强各种有机半导体中的空穴迁移率,包括小分子,聚合物和小分子:聚合物共混物,后一种系统表现出最高的迁移率。该方法很简单,并且依赖于溶液沉积之前将分子路易斯酸B(C6F5)3在半导体配方中混合。 B(C6F5)3表现出显着影响的两个原型半导体是2,8-二氟-5,11-双(三乙基甲硅烷基乙炔基)蒽噻吩:聚(三芳基胺)(diF-TESADT:PTAA)和2, 7-二辛基[1]-苯并噻吩并[3,2-b] [1]苯并噻吩:聚(茚并二噻吩-co-苯并噻二唑)(C8-BTBT:C16-IDTBT),其孔迁移率为8和11 cm 分别获得2 V -1 s -1 。还显示,用B(C6F5)3掺杂6,13-​​双(三异丙基甲硅烷基乙炔基)并五苯:PTAA共混物可将最大空穴迁移率提高到3.7 cm 2 V -1 s -1 。对单组分和多组分材料的分析表明,B(C6F5)3发挥双重作用,首先是作为有效的p型掺杂剂,其次是作为微结构改性剂。发现同时进行p掺杂和掺杂剂诱导的长程结晶的半导体始终优于基于原始材料的晶体管。我们的工作强调了路易斯酸掺杂是实现高性能印刷有机微电子学的通用策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号