首页> 美国卫生研究院文献>Journal of Nanotechnology in Engineering and Medicine >Two-Dimensional Modeling of Nanomechanical Strains in Healthy and Diseased Single-Cells During Microfluidic Stress Applications
【2h】

Two-Dimensional Modeling of Nanomechanical Strains in Healthy and Diseased Single-Cells During Microfluidic Stress Applications

机译:健康和患病单细胞中微机械应力应用过程中纳米机械菌株的二维建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Investigations in cellular and molecular engineering have explored the impact of nanotechnology and the potential for monitoring and control of human diseases. In a recent analysis, the dynamic fluid-induced stresses were characterized during microfluidic applications of an instrument with nanometer and picoNewton resolution as developed for single-cell biomechanics (Kohles, S. S., Nève, N., Zimmerman, J. D., and Tretheway, D. C., 2009, “Stress Analysis of Microfluidic Environments Designed for Isolated Biological Cell Investigations,” ASME J. Biomech. Eng., >131(12), p. 121006). The results described the limited stress levels available in laminar, creeping-flow environments, as well as the qualitative cellular strain response to such stress applications. In this study, we present a two-dimensional computational model exploring the physical application of normal and shear stress profiles (with 0.1, 1.0, and 10.0 Pa peak amplitudes) potentially available within uniform and extensional flow states. The corresponding cellular strains and strain patterns were determined within cells modeled with healthy and diseased mechanical properties (5.0–0.1 kPa moduli, respectively). Strain energy density results integrated over the volume of the planar section indicated a strong mechanical sensitivity involving cells with disease-like properties. In addition, ex vivo microfluidic environments creating in vivo stress states would require freestream flow velocities of 2–7 mm/s. Knowledge of the nanomechanical stresses-strains necessary to illicit a biologic response in the cytoskeleton and cellular membrane will ultimately lead to refined mechanotransduction relationships.
机译:细胞和分子工程学的研究探索了纳米技术的影响以及对人类疾病的监测和控制的潜力。在最近的一项分析中,针对单细胞生物力学(Kohles,SS,Nève,N.,Zimmerman,JD和Tretheway,DC, 2009年,“为分离的生物细胞研究设计的微流体环境应力分析”,ASME J. Biomech。Eng。,> 131 (12),第121006页)。结果描述了在层流,蠕变流环境中可用的有限应力水平,以及对此类应力应用的定性细胞应变响应。在这项研究中,我们提出了一个二维计算模型,探讨了在均匀和扩展流动状态下可能可用的正应力和切应力曲线(峰值振幅分别为0.1、1.0和10.0 Pa)的物理应用。确定了具有健康和患病机械特性(分别为5.0–0.1 kPa模数)的模型细胞内的相应细胞株和株型。在平面部分的体积上积分的应变能密度结果表明,涉及具有疾病样特性的细胞具有很强的机械敏感性。另外,产生体内应力状态的离体微流体环境将需要2-7 mm / s的自由流速度。对在细胞骨架和细胞膜中进行非法生物学反应所必需的纳米机械应力-应变的知识最终将导致精确的机械转导关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号