首页> 美国卫生研究院文献>Journal of Nanotechnology in Engineering and Medicine >Biokinetic Mechanisms Linked With Musculoskeletal Health Disparities: Stochastic Models Applying Tikhonov’s Theorem to Biomolecule Homeostasis
【2h】

Biokinetic Mechanisms Linked With Musculoskeletal Health Disparities: Stochastic Models Applying Tikhonov’s Theorem to Biomolecule Homeostasis

机译:与骨骼肌肉健康差异有关的生物动力学机制:将Tikhonov定理应用于生物分子稳态的随机模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multiscale technology and advanced mathematical models have been developed to control and characterize physicochemical interactions, respectively, enhancing cellular and molecular engineering progress. Ongoing tissue engineering development studies have provided experimental input for biokinetic models examining the influence of static or dynamic mechanical stimuli (Saha, A. K., and Kohles, S. S., 2010, “A Distinct Catabolic to Anabolic Threshold Due to Single-Cell Nanomechanical Stimulation in a Cartilage Biokinetics Model,” J. Nanotechnol. Eng. Med., >1(3) p. 031005; 2010, “Periodic Nanomechanical Stimulation in a Biokinetics Model Identifying Anabolic and Catabolic Pathways Associated With Cartilage Matrix Homeostasis,” J. Nanotechnol. Eng. Med., >1(4), p. 041001). In the current study, molecular regulatory thresholds associated with specific disease disparities are further examined through applications of stochastic mechanical stimuli. The results indicate that chondrocyte bioregulation initiates the catabolic pathway as a secondary response to control anabolic processes. In addition, high magnitude loading produced as a result of stochastic input creates a destabilized balance in homeostasis. This latter modeled result may be reflective of an injurious state or disease progression. These mathematical constructs provide a framework for single-cell mechanotransduction and may characterize transitions between healthy and disease states.
机译:已经开发了多尺度技术和先进的数学模型来分别控制和表征物理化学相互作用,从而增强了细胞和分子工程学的进展。正在进行的组织工程开发研究已经为生物动力学模型提供了实验输入,以研究静态或动态机械刺激的影响(Saha,AK和Kohles,SS,2010,“由于软骨中单细胞纳米机械刺激而导致的分解代谢与合成代谢阈值不同)。生物动力学模型”,J。Nanotechnol。Eng。Med。,> 1 (3),第031005页; 2010年,“生物动力学模型中的周期性纳米力学刺激,该模型确定了与软骨基质稳态相关的合成代谢和分解代谢途径,” J. Nanotechnol。Eng。Med。,> 1 (4),第041001页)。在当前研究中,通过应用随机机械刺激进一步检查与特定疾病差异相关的分子调控阈值。结果表明软骨细胞的生物调节启动分解代谢途径作为控制合成代谢过程的第二反应。此外,由于随机输入而产生的高强度负载会导致动态平衡的不稳定。后一种建模结果可能反映了伤害状态或疾病进展。这些数学结构为单细胞机械转导提供了框架,并且可以表征健康状态和疾病状态之间的转换。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号