首页> 美国卫生研究院文献>Journal of Neurophysiology >Reconfiguration of the Pontomedullary Respiratory Network: A Computational Modeling Study With Coordinated In Vivo Experiments
【2h】

Reconfiguration of the Pontomedullary Respiratory Network: A Computational Modeling Study With Coordinated In Vivo Experiments

机译:重构髓腔呼吸网络:体内实验协调的计算模型研究。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A large body of data suggests that the pontine respiratory group (PRG) is involved in respiratory phase-switching and the reconfiguration of the brain stem respiratory network. However, connectivity between the PRG and ventral respiratory column (VRC) in computational models has been largely ad hoc. We developed a network model with PRG-VRC connectivity inferred from coordinated in vivo experiments. Neurons were modeled in the “integrate-and-fire” style; some neurons had pacemaker properties derived from the model of Breen et al. We recapitulated earlier modeling results, including reproduction of activity profiles of different respiratory neurons and motor outputs, and their changes under different conditions (vagotomy, pontine lesions, etc.). The model also reproduced characteristic changes in neuronal and motor patterns observed in vivo during fictive cough and during hypoxia in non-rapid eye movement sleep. Our simulations suggested possible mechanisms for respiratory pattern reorganization during these behaviors. The model predicted that network- and pacemaker-generated rhythms could be co-expressed during the transition from gasping to eupnea, producing a combined “burst-ramp” pattern of phrenic discharges. To test this prediction, phrenic activity and multiple single neuron spike trains were monitored in vagotomized, decerebrate, immobilized, thoracotomized, and artificially ventilated cats during hypoxia and recovery. In most experiments, phrenic discharge patterns during recovery from hypoxia were similar to those predicted by the model. We conclude that under certain conditions, e.g., during recovery from severe brain hypoxia, components of a distributed network activity present during eupnea can be co-expressed with gasp patterns generated by a distinct, functionally “simplified” mechanism.
机译:大量数据表明脑桥呼吸组(PRG)参与呼吸相转换和脑干呼吸网络的重构。但是,在计算模型中PRG和腹侧呼吸柱(VRC)之间的连通性在很大程度上是临时的。我们开发了具有PRG-VRC连接性的网络模型,该模型是通过体内实验协调得出的。神经元以“整合并发射”的方式建模。一些神经元具有起自Breen等人模型的起搏器特性。我们总结了较早的建模结果,包括再现了不同呼吸神经元和运动输出的活动曲线,以及它们在不同条件下(迷走神经切开术,桥脑病变等)的变化。该模型还重现了虚构性咳嗽和非快速眼动睡眠中的低氧期间体内观察到的神经元和运动模式的特征性变化。我们的模拟结果表明,在这些行为期间呼吸模式重组的可能机制。该模型预测,在从喘气到气喘的过渡过程中,网络和起搏器产生的节律可能会共同表达,从而产生a气放电的“突发-斜坡”组合模式。为了验证这一预测,在缺氧和康复期间,对迷走神经切断,去脑,固定,胸廓切开和人工通气的猫进行monitored活动和多个单神经元突波监测。在大多数实验中,从缺氧恢复过程中的di​​scharge气放电模式与模型预测的模式相似。我们得出的结论是,在某些情况下,例如,在从严重的脑缺氧中恢复的过程中,可以通过由独特的,功能上“简化的”机制产生的喘息模式来共同表达在呼吸暂停期间存在的分布式网络活动的成分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号