首页> 美国卫生研究院文献>Journal of Neurophysiology >Computational Approaches to Spatial Orientation: From Transfer Functions to Dynamic Bayesian Inference
【2h】

Computational Approaches to Spatial Orientation: From Transfer Functions to Dynamic Bayesian Inference

机译:空间定向的计算方法:从传递函数到动态贝叶斯推理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spatial orientation is the sense of body orientation and self-motion relative to the stationary environment, fundamental to normal waking behavior and control of everyday motor actions including eye movements, postural control, and locomotion. The brain achieves spatial orientation by integrating visual, vestibular, and somatosensory signals. Over the past years, considerable progress has been made toward understanding how these signals are processed by the brain using multiple computational approaches that include frequency domain analysis, the concept of internal models, observer theory, Bayesian theory, and Kalman filtering. Here we put these approaches in context by examining the specific questions that can be addressed by each technique and some of the scientific insights that have resulted. We conclude with a recent application of particle filtering, a probabilistic simulation technique that aims to generate the most likely state estimates by incorporating internal models of sensor dynamics and physical laws and noise associated with sensory processing as well as prior knowledge or experience. In this framework, priors for low angular velocity and linear acceleration can explain the phenomena of velocity storage and frequency segregation, both of which have been modeled previously using arbitrary low-pass filtering. How Kalman and particle filters may be implemented by the brain is an emerging field. Unlike past neurophysiological research that has aimed to characterize mean responses of single neurons, investigations of dynamic Bayesian inference should attempt to characterize population activities that constitute probabilistic representations of sensory and prior information.
机译:空间定向是相对于静止环境的身体定向和自我运动的感觉,是正常醒来行为和控制日常运动动作(包括眼睛运动,姿势控制和运动)的基础。大脑通过整合视觉,前庭和体感信号来实现空间定向。在过去的几年中,在使用多种计算方法来理解大脑如何处理这些信号方面取得了长足的进步,这些方法包括频域分析,内部模型的概念,观察者理论,贝叶斯理论和卡尔曼滤波。在这里,我们通过研究每种技术可以解决的特定问题以及由此产生的一些科学见解,将这些方法置于上下文中。我们以粒子滤波的最新应用为结尾,该技术是一种概率模拟技术,旨在通过结合传感器动态和物理定律的内部模型以及与传感处理以及先验知识或经验相关的噪声来生成最可能的状态估计。在此框架中,低角速度和线性加速度的先验条件可以解释速度存储和频率分离的现象,这两种现象先前已使用任意低通滤波进行了建模。大脑如何实现卡尔曼和粒子过滤器是一个新兴领域。与过去旨在表征单个神经元平均反应的神经生理学研究不同,对动态贝叶斯推理的研究应尝试表征构成感觉和先验信息的概率表示的群体活动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号