首页> 美国卫生研究院文献>Scientific Reports >Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors
【2h】

Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors

机译:用于超级电容器的石墨烯和碳纳米管混合泡沫锚固的水合氧化钌纳米颗粒

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In real life applications, supercapacitors (SCs) often can only be used as part of a hybrid system together with other high energy storage devices due to their relatively lower energy density in comparison to other types of energy storage devices such as batteries and fuel cells. Increasing the energy density of SCs will have a huge impact on the development of future energy storage devices by broadening the area of application for SCs. Here, we report a simple and scalable way of preparing a three-dimensional (3D) sub-5 nm hydrous ruthenium oxide (RuO2) anchored graphene and CNT hybrid foam (RGM) architecture for high-performance supercapacitor electrodes. This RGM architecture demonstrates a novel graphene foam conformally covered with hybrid networks of RuO2 nanoparticles and anchored CNTs. SCs based on RGM show superior gravimetric and per-area capacitive performance (specific capacitance: 502.78 F g−1, areal capacitance: 1.11 F cm−2) which leads to an exceptionally high energy density of 39.28 Wh kg−1 and power density of 128.01 kW kg−1. The electrochemical stability, excellent capacitive performance, and the ease of preparation suggest this RGM system is promising for future energy storage applications.
机译:在现实生活中,超级电容器(SC)与其他类型的能量存储设备(例如电池和燃料电池)相比,能量密度相对较低,因此通常只能与其他高能量存储设备一起用作混合系统的一部分。通过扩大SC的应用范围,提高SC的能量密度将对未来储能设备的发展产生巨大影响。在这里,我们报告了一种简单且可扩展的方法,用于制备高性能超级电容器电极的三维(3D)5nm以下亚微米水合氧化钌(RuO2)锚固石墨烯和CNT混合泡沫(RGM)体系结构。这种RGM体系结构展示了一种新型的石墨烯泡沫,该泡沫共形地覆盖有RuO2纳米颗粒和锚定CNT的混合网络。基于RGM的SC表现出优异的重量和单位面积电容性能(比电容:502.78 F g -1 ,面电容:1.11 F cm −2 )能量密度极高,为39.28 Wh kg -1 ,功率密度为128.01 kW kg -1 。电化学稳定性,出色的电容性能以及易于制备表明,该RGM系统在未来的储能应用中很有希望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号