首页> 美国卫生研究院文献>Scientific Reports >Ultra-broadband enhancement of nonlinear optical processes from randomly patterned super absorbing metasurfaces
【2h】

Ultra-broadband enhancement of nonlinear optical processes from randomly patterned super absorbing metasurfaces

机译:随机图案化的超吸收超表面对非线性光学过程的超宽带增强

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Broadband light trapping and field localization is highly desired in enhanced light-matter interaction, especially in harmonic generations. However, due to the limited resonant bandwidth, most periodic plasmonic nanostructures cannot cover both fundamental excitation wavelength and harmonic generation wavelength simultaneously. Therefore, most previously reported plasmonic nonlinear optical processes are low in conversion efficiency. Here, we report a strong enhancement of second harmonic generation based on a three-layered super absorbing metasurface structure consisting of a dielectric spacer layer sandwiched by an array of random metallic nanoantennas and a metal ground plate. Intriguingly, the strong light trapping band (e.g. >80%) was realized throughout the entire visible to near-infrared spectral regime (i.e., from 435 nm to 1100 nm), enabling plasmonically enhanced surface harmonic generation and frequency mixing across a broad range of excitation wavelengths, which cannot be achieved with narrow band periodic plasmonic structures. By introducing hybrid random antenna arrays with small metallic nanoparticles and ultra-thin nonlinear optical films (e.g. TiO2) into the nanogaps, the nonlinear optical process can be further enhanced. This broadband light-trapping metastructure shows its potential as a building block for emerging nonlinear optical meta-atoms.
机译:增强光-物质相互作用,尤其是在谐波产生中,非常需要宽带光陷波和场定位。然而,由于有限的共振带宽,大多数周期性等离子体纳米结构不能同时覆盖基本激发波长和谐波产生波长。因此,大多数先前报道的等离激元非线性光学过程转换效率低。在这里,我们报告了基于三层超吸收超表面结构的二次谐波产生的强大增强,该结构由介电间隔层和随机接地的金属纳米天线和金属接地板组成,介电间隔层由三层结构组成。有趣的是,在整个可见光到近红外光谱范围(即435 nm至1100 nm)中都实现了强大的光捕获带(例如,> 80%),从而在宽范围的频率范围内实现了等离子体增强的表面谐波产生和混频。激发波长,这是窄带周期性等离子体结构无法实现的。通过将具有小金属纳米颗粒和超薄非线性光学膜(例如TiO2)的混合随机天线阵列引入纳米间隙,可以进一步增强非线性光学过程。这种宽带光俘获的元结构显示了其作为新兴的非线性光学元原子的基础的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号