首页> 美国卫生研究院文献>Scientific Reports >The viscosity-radius relationship for concentrated polymer solutions
【2h】

The viscosity-radius relationship for concentrated polymer solutions

机译:浓缩聚合物溶液的粘度-半径关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A key assumption of polymer physics is that the random chain polymers extend in flow. Recent experimental evidence has shown that polymer chains compress in Couette flow in a manner counter to expectation. Here, scaling arguments and experimental evidence from the literature are used to determine the relationship between the viscosity, η, and chain radius of gyration, RG. The viscosity-radius of gyration relationship is found to be η~RGm(γ˙) where m(γ˙) is the power law exponent of the viscosity-temperature relationship that depends on the specific polymer-solvent system and the shear rate, γ˙. The viscosity is shown to be a power law function of the radius, and to decrease with decreasing radius under conditions where the chains are ideal random walks in concentrated solution. Furthermore, this relationship is consistent with both the widely observed viscosity-temperature and viscosity-shear rate behavior observed in polymer rheology. The assumption of extension is not consistent with these observations as it would require that the chains increase in size with increasing temperature. Shear thinning is thus a result of a decreasing radius with increasing shear rate as RG~γ˙n/m(γ˙) where n is the power law exponent. Furthermore, the thermal expansion coefficients determine the variation in the power law exponents that are measured for different polymer systems. Typical values of n enable the measured reduction in coils size behavior to be fitted. Furthermore, the notion that polymer chains extend to reduce the viscosity implies that an increasing chain size results in a reduced viscosity is addressed. This assumption would require that the viscosity increases with reducing coil radius which is simply unphysical.
机译:聚合物物理学的一个关键假设是无规链聚合物在流动中延伸。最近的实验证据表明,聚合物链在库埃特流中的压缩方式与预期相反。在这里,使用比例论证和来自文献的实验证据来确定粘度η和回转半径RG之间的关系。发现旋转关系的粘度半径为 η R G m γ ˙ 其中m( <移动器> γ ˙ )是取决于特定聚合物-溶剂系统和剪切速率的粘度-温度关系的幂律指数, <移动器> γ ˙ 。已显示出粘度是半径的幂律函数,并且在链是理想的浓缩溶液中随机游动的条件下,粘度随半径的减小而减小。此外,该关系与在聚合物流变学中观察到的广泛观察到的粘度-温度和粘度-剪切速率行为一致。延伸的假设与这些观察结果不一致,因为这将要求链的尺寸随着温度的升高而增加。因此,剪切稀化是半径随剪切速率增加而减小的结果,如 < msub> R G γ ˙ < / mrow> n / m γ ˙ 其中n是幂律指数。此外,热膨胀系数确定了针对不同聚合物系统测量的幂律指数的变化。 n的典型值使所测得的线圈尺寸行为减小得以拟合。此外,解决了聚合物链延伸以降低粘度的概念意味着增加链的尺寸导致降低的粘度。该假设将要求粘度随着线圈半径的减小而增加,这仅仅是不物理的。

著录项

  • 期刊名称 Scientific Reports
  • 作者

    Dave E. Dunstan;

  • 作者单位
  • 年(卷),期 -1(9),-1
  • 年度 -1
  • 页码 543
  • 总页数 9
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号