首页> 美国卫生研究院文献>Scientific Reports >Oscillatory shear potentiates latent TGF-β1 activation more than steady shear as demonstrated by a novel force generator
【2h】

Oscillatory shear potentiates latent TGF-β1 activation more than steady shear as demonstrated by a novel force generator

机译:新型剪切力发生器证明振荡剪切比稳定剪切更能增强潜在的TGF-β1活化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cardiovascular mechanical stresses trigger physiological and pathological cellular reactions including secretion of Transforming Growth Factor β1 ubiquitously in a latent form (LTGF-β1). While complex shear stresses can activate LTGF-β1, the mechanisms underlying LTGF-β1 activation remain unclear. We hypothesized that different types of shear stress differentially activate LTGF-β1. We designed a custom-built cone-and-plate device to generate steady shear (SS) forces, which are physiologic, or oscillatory shear (OSS) forces characteristic of pathologic states, by abruptly changing rotation directions. We then measured LTGF-β1 activation in platelet releasates. We modeled and measured flow profile changes between SS and OSS by computational fluid dynamics (CFD) simulations. We found a spike in shear rate during abrupt changes in rotation direction. OSS activated TGF-β1 levels significantly more than SS at all shear rates. OSS altered oxidation of free thiols to form more high molecular weight protein complex(es) than SS, a potential mechanism of shear-dependent LTGF-β1 activation. Increasing viscosity in platelet releasates produced higher shear stress and higher LTGF-β1 activation. OSS-generated active TGF-β1 stimulated higher pSmad2 signaling and endothelial to mesenchymal transition (EndoMT)-related genes PAI-1, collagen, and periostin expression in endothelial cells. Overall, our data suggest variable TGF-β1 activation and signaling occurs with competing blood flow patterns in the vasculature to generate complex shear stress, which activates higher levels of TGF-β1 to drive vascular remodeling.
机译:心血管机械应激会触发生理和病理细胞反应,包括以潜伏形式(LTGF-β1)普遍分泌转化生长因子β1。虽然复杂的剪切应力可以激活LTGF-β1,但尚不清楚LTGF-β1激活的基础机制。我们假设不同类型的切应力会差异地激活LTGF-β1。我们设计了一个定制的锥板装置,通过突然改变旋转方向来生成稳定剪切力(SS)力,这是病理状态下的生理剪切力或振荡剪切力(OSS)力。然后,我们测量了血小板释放物中的LTGF-β1活化。我们通过计算流体动力学(CFD)模拟来建模和测量SS和OSS之间的流量剖面变化。我们发现,在旋转方向突然变化的过程中,剪切速率出现了峰值。在所有剪切速率下,OSS激活的TGF-β1水平均显着高于SS。 OSS改变了游离硫醇的氧化,形成了比SS高分子量的蛋白质复合物,这是剪切依赖性LTGF-β1活化的潜在机制。血小板释放物中粘度的增加产生较高的剪切应力和较高的LTGF-β1活化。 OSS产生的活性TGF-β1刺激了内皮细胞中更高的pSmad2信号传导和内皮向间充质转化(EndoMT)相关基因PAI-1,胶原蛋白和骨膜素表达。总体而言,我们的数据表明可变的TGF-β1激活和信号传导与脉管系统中竞争的血流模式一起产生,以产生复杂的切应力,从而激活较高水平的TGF-β1以驱动血管重塑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号