首页> 美国卫生研究院文献>Scientific Reports >Change of Deformation Mechanisms Leading to High Strength and Large Ductility in Mg-Zn-Zr-Ca Alloy with Fully Recrystallized Ultrafine Grained Microstructures
【2h】

Change of Deformation Mechanisms Leading to High Strength and Large Ductility in Mg-Zn-Zr-Ca Alloy with Fully Recrystallized Ultrafine Grained Microstructures

机译:具有完全重结晶超细晶粒组织的Mg-Zn-Zr-Ca合金的变形机制导致高强​​度和大延展性的变化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, we have found that fully recrystallized ultrafine-grained (UFG) microstructures could be realized in a commercial precipitation-hardened Magnesium (Mg) alloy. The UFG specimens exhibited high strength and large ductility under tensile test, but underlying mechanisms for good mechanical properties remained unclear. In this study, we have carried out systematic observations of deformation microstructures for revealing the influence of grain size on the change of dominant deformation modes. We found that plastic deformation of conventionally coarse-grained specimen was predominated by {0001} <11–20> slip and {10–12} <10–11> twinning, and the quick decrease of work-hardening rate was mainly due to the early saturation of deformation twins. For the UFG specimens, {10–12} <10–11> twinning was dramatically suppressed, while non-basal slip systems containing <c> component of Burgers vector were activated, which contributed significantly to the enhanced work-hardening rate leading to high strength and large ductility. It was clarified by this study that limited ductility of hexagonal Mg alloys could be overcome by activating unusual slip systems (<c + a> dislocations) in fully recrystallized UFG microstructures.
机译:最近,我们发现可以在商业沉淀硬化的镁(Mg)合金中实现完全重结晶的超细晶粒(UFG)显微组织。 UFG试样在拉伸试验中表现出高强度和大延展性,但良好机械性能的基本机制仍不清楚。在这项研究中,我们进行了变形微观结构的系统观察,以揭示晶粒尺寸对主要变形模式变化的影响。我们发现,常规粗晶粒试样的塑性变形主要由{0001} <11–20>滑移和{10–12} <10–11>孪生引起,而加工硬化率的快速下降主要是由于变形双胞胎的早期饱和。对于UFG标本,{10–12} <10–11>孪生被显着抑制,而包含Burgers载体的成分的非基底滑移系统被激活,这极大地提高了工作硬化率,从而导致了强度和延展性大。这项研究明确指出,可以通过在完全重结晶的UFG微结构中激活异常的滑移系统(位错)来克服六方镁合金有限的延展性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号