首页> 美国卫生研究院文献>Scientific Reports >Large enhancement of superconducting transition temperature of SrBi3 induced by Na substitution for Sr
【2h】

Large enhancement of superconducting transition temperature of SrBi3 induced by Na substitution for Sr

机译:Na替代Sr引起的SrBi3超导转变温度的大幅提高

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Matthias rule, which is an empirical correlation between the superconducting transition temperature (Tc) and the average number of valence electrons per atom (n) in alloys and intermetallic compounds, has been used in the past as a guiding principle to search for new superconductors with higher Tc. The intermetallic compound SrBi3 (AuCu3 structure) exhibits a Tc of 5.6 K. An ab-initio electronic band structure calculation for SrBi3 predicted that Tc increases on decreasing the Fermi energy, i.e., on decreasing n, because of a steep increase in the density of states. In this study, we demonstrated that high-pressure (~ 3 GPa) and low-temperature ( < 350 °C) synthesis conditions enables the substitution of Na for about 40 at.% of Sr. With a consequent decrease in n, the Tc of (Sr,Na)Bi3 increases to 9.0 K. A new high-Tc peak is observed in the oscillatory dependence of Tc on n in compounds with the AuCu3 structure. We have shown that the oscillatory dependence of Tc is in good agreement with the band structure calculation. Our experiments reaffirm the importance of controlling the number of electrons in intermetallic compounds.
机译:Matthias规则是合金和金属间化合物中超导转变温度(Tc)与每个原子平均价电子数量(n)之间的经验相关性,过去曾被用作寻找新超导体的指导原则Tc更高。金属间化合物SrBi3(AuCu3结构)的Tc为5.6 K. SrBi3的从头算电子能带结构计算预测,Tc随着费米能量的降低(即n的降低)而增加,这是因为Si的密度急剧增加。状态。在这项研究中,我们证明了高压(〜3 GPa)和低温(<350°C)合成条件能够用Na替代约40 at。%的Sr。结果,n降低,Tc (Sr,Na)Bi3的摩尔比增加到9.0 K.在具有AuCu3结构的化合物中Tc对n的振荡依赖性中观察到一个新的高Tc峰。我们已经表明,Tc的振荡依赖性与能带结构计算非常吻合。我们的实验重申了控制金属间化合物中电子数量的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号