首页> 美国卫生研究院文献>Scientific Reports >Origin of Self-preservation Effect for Hydrate Decomposition: Coupling of Mass and Heat Transfer Resistances
【2h】

Origin of Self-preservation Effect for Hydrate Decomposition: Coupling of Mass and Heat Transfer Resistances

机译:水合物分解的自我保存作用的起源:质量与传热阻力的耦合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Gas hydrates could show an unexpected high stability at conditions out of thermodynamic equilibrium, which is called the self-preservation effect. The mechanism of the effect for methane hydrates is here investigated via molecular dynamics simulations, in which an NVT/E method is introduced to represent different levels of heat transfer resistance. Our simulations suggest a coupling between the mass transfer resistance and heat transfer resistance as the driving mechanism for self-preservation effect. We found that the hydrate is initially melted from the interface, and then a solid-like water layer with temperature-dependent structures is formed next to the hydrate interface that exhibits fractal feature, followed by an increase of mass transfer resistance for the diffusion of methane from hydrate region. Furthermore, our results indicate that heat transfer resistance is a more fundamental factor, since it facilitates the formation of the solid-like layer and hence inhibits the further dissociation of the hydrates. The self-preservation effect is found to be enhanced with the increase of pressure and particularly the decrease of temperature. Kinetic equations based on heat balance calculations is also developed to describe the self-preservation effect, which reproduces our simulation results well and provides an association between microscopic and macroscopic properties.
机译:气体水合物在热力学平衡之外的条件下可能表现出出乎意料的高稳定性,这被称为自我保存效应。本文通过分子动力学模拟研究了甲烷水合物的作用机理,其中引入了NVT / E方法来代表不同水平的传热阻力。我们的模拟表明传质阻力和传热阻力之间的耦合作为自我保存效应的驱动机制。我们发现水合物首先从界面融化,然后在具有分形特征的水合物界面附近形成具有温度依赖性结构的固体状水层,随后增加了甲烷扩散的传质阻力来自水合物区域。此外,我们的结果表明,传热阻力是一个更基本的因素,因为它促进了固体层的形成并因此抑制了水合物的进一步解离。发现随着压力的增加,特别是温度的降低,自我保存效果增强。还开发了基于热平衡计算的动力学方程式来描述自我保存效果,该效果很好地再现了我们的模拟结果,并提供了微观和宏观特性之间的联系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号