首页> 美国卫生研究院文献>Scientific Reports >Engineering of a novel cellulose-adherent cellulolytic Saccharomyces cerevisiae for cellulosic biofuel production
【2h】

Engineering of a novel cellulose-adherent cellulolytic Saccharomyces cerevisiae for cellulosic biofuel production

机译:用于纤维素生物燃料生产的新型纤维素附着型纤维素酿酒酵母的工程设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cellulosic biofuel is the subject of increasing attention. The main obstacle toward its economic feasibility is the recalcitrance of lignocellulose requiring large amount of enzyme to break. Several engineered yeast strains have been developed with cellulolytic activities to reduce the need for enzyme addition, but exhibiting limited effect. Here, we report the successful engineering of a cellulose-adherent Saccharomyces cerevisiae displaying four different synergistic cellulases on the cell surface. The cellulase-displaying yeast strain exhibited clear cell-to-cellulose adhesion and a “tearing” cellulose degradation pattern; the adhesion ability correlated with enhanced surface area and roughness of the target cellulose fibers, resulting in higher hydrolysis efficiency. The engineered yeast directly produced ethanol from rice straw despite a more than 40% decrease in the required enzyme dosage for high-density fermentation. Thus, improved cell-to-cellulose interactions provided a novel strategy for increasing cellulose hydrolysis, suggesting a mechanism for promoting the feasibility of cellulosic biofuel production.
机译:纤维素生物燃料日益受到关注。其经济可行性的主要障碍是需要大量酶分解的木质纤维素的顽固性。已经开发了几种具有纤维素分解活性的工程酵母菌株,以减少添加酶的需求,但效果有限。在这里,我们报告成功的工程,纤维素粘附啤酒酵母显示在细胞表面上的四个不同的协同纤维素酶。展示纤维素酶的酵母菌株表现出清晰的细胞间粘附性和“撕裂”的纤维素降解模式。粘附能力与目标纤维素纤维的表面积和粗糙度增加相关,从而导致更高的水解效率。尽管高密度发酵所需的酶用量减少了40%以上,工程酵母还是直接从稻草中生产乙醇。因此,改善的细胞间相互作用提供了增加纤维素水解的新策略,提示了促进纤维素生物燃料生产可行性的机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号