首页> 美国卫生研究院文献>Scientific Reports >Structural Signature of Plasticity Unveiled by Nano-Scale Viscoelastic Contact in a Metallic Glass
【2h】

Structural Signature of Plasticity Unveiled by Nano-Scale Viscoelastic Contact in a Metallic Glass

机译:金属玻璃中纳米级粘弹性接触揭示的可塑性的结构特征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Room-temperature plasticity in metallic glasses (MGs) is commonly associated with local structural heterogeneity; however, direct observation of the subtle structural change caused by plasticity is vitally important but the data are extremely scarce. Based on dynamic atomic force microscopy (DAFM), here we show that plasticity-induced structural evolution in a Zr-Ni MG can be revealed via nano-scale viscoelastic contacts between an AFM tip and plastically deformed MG surface layers. Our experimental results clearly show a spatial amplification of the nano-scale structural heterogeneity caused by the distributed plastic flow, which can be linked to the limited growth, reorientation and agglomeration of some nano-scale energy-absorbing regions, which are reminiscent of the behavior of the defect-like regions with non-affine deformation as conceived in many theories and models. Furthermore, we are able to experimentally extract the thermodynamic properties of these nano-scale regions, which possess an energy barrier of 0.3–0.5 eV, about half of that for a typical shear transformation event that usually occurs at the onset of plasticity. The outcome of our current work sheds quantitative insights into the correlation between plasticity and structural heterogeneity in MGs.
机译:金属玻璃(MGs)的室温可塑性通常与局部结构的异质性有关。但是,直接观察由可塑性引起的细微结构变化至关重要,但数据极为匮乏。基于动态原子力显微镜(DAFM),我们在这里显示Zr-Ni MG中可塑性诱导的结构演变可以通过AFM尖端与塑性变形MG表面层之间的纳米尺度粘弹性接触来揭示。我们的实验结果清楚地表明了由分布的塑性流引起的纳米级结构异质性的空间放大,这可能与某些纳米级能量吸收区域的有限的生长,重新定向和团聚有关,这让人联想到这种行为。许多理论和模型中都设想到的具有非仿射变形的缺陷状区域。此外,我们能够通过实验提取这些纳米级区域的热力学性质,这些区域的能垒为0.3–0.5 eV,大约是通常在可塑性发生时发生的典型剪切转变事件的能垒的一半。我们当前工作的结果为MG的可塑性和结构异质性之间的相关性提供了定量的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号