首页> 美国卫生研究院文献>Scientific Reports >Broadband light trapping strategies for quantum-dot photovoltaic cells (10) and their issues with the measurement of photovoltaic characteristics
【2h】

Broadband light trapping strategies for quantum-dot photovoltaic cells (10) and their issues with the measurement of photovoltaic characteristics

机译:量子点光伏电池的宽带光捕获策略( 10%)及其与光伏特性测量相关的问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bandgap tunability and broadband absorption make quantum-dot (QD) photovoltaic cells (PVs) a promising candidate for future solar energy conversion systems. Approaches to improving the electrical properties of the active layer increase efficiency in part. The present study focuses on optical room for enhancement in QD PVs over wide spectrum in the near-infrared (NIR) region. We find that ray-optical light trapping schemes rather than the nanophotonics approach may be the best solution for enhancing broadband QD PVs by suppressing the escape probability of internal photons without spectral dependency. Based on the theoretical study of diverse schemes for various bandgaps, we apply a V-groove structure and a V-groove textured compound parabolic trapper (VCPT) to PbS-based QD PVs along with the measurement issues for PVs with a light scattering layer. The efficiency of the best device is improved from 10.3% to 11.0% (certified to 10.8%) by a V-groove structure despite the possibility of underestimation caused by light scattering in small-area devices (aperture area: 0.0625 cm2). By minimizing such underestimation, even greater enhancements of 13.6% and 15.6% in short circuit current are demonstrated for finger-type devices (0.167 cm2 without aperture) and large-area devices (2.10 cm2 with an aperture of 0.350 cm2), respectively, using VCPT.
机译:带隙可调性和宽带吸收使量子点(QD)光伏电池(PVs)成为未来太阳能转换系统的有希望的候选者。改善有源层的电性能的方法部分地提高了效率。本研究的重点是在近红外(NIR)区域的宽光谱中增强QD PV的光学空间。我们发现,通过抑制内部光子的逃逸概率而不依赖光谱,射线-光光捕获方案而非纳米光子学方法可能是增强宽带QD PV的最佳解决方案。基于对各种带隙的各种方案的理论研究,我们将V形槽结构和V形槽纹理复合抛物线形陷阱(VCPT)应用于基于PbS的QD PV,以及带有光散射层的PV的测量问题。尽管可能由于小面积设备(孔径面积:0.0625 cm 2)中的光散射而导致低估的可能性,但V形槽结构将最佳设备的效率从10.3%提高到11.0%(经认证达到10.8%)。 )。通过最小化这样的低估,对于手指型设备(无孔的0.167 cm 2 )和大面积设备(2.10 cm ),短路电流的增大幅度进一步提高了13.6%和15.6%。 2 ,孔径为0.350upcm 2 ),使用VCPT。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号