首页> 美国卫生研究院文献>Scientific Reports >Combining Turing and 3D vertex models reproduces autonomous multicellular morphogenesis with undulation tubulation and branching
【2h】

Combining Turing and 3D vertex models reproduces autonomous multicellular morphogenesis with undulation tubulation and branching

机译:将Turing和3D顶点模型相结合可重现自主的多细胞形态发生起伏成管和分支

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study demonstrates computational simulations of multicellular deformation coupled with chemical patterning in the three-dimensional (3D) space. To address these aspects, we proposes a novel mathematical model, where a reaction–diffusion system is discretely expressed at a single cell level and combined with a 3D vertex model. To investigate complex phenomena emerging from the coupling of patterning and deformation, as an example, we employed an activator–inhibitor system and converted the activator concentration of individual cells into their growth rate. Despite the simplicity of the model, by growing a monolayer cell vesicle, the coupling system provided rich morphological dynamics such as undulation, tubulation, and branching. Interestingly, the morphological variety depends on the difference in time scales between patterning and deformation, and can be partially understood by the intrinsic hysteresis in the activator-inhibitor system with domain growth. Importantly, the model can be applied to 3D multicellular dynamics that couple the reaction–diffusion patterning with various cell behaviors, such as deformation, rearrangement, division, apoptosis, differentiation, and proliferation. Thus, the results demonstrate the significant advantage of the proposed model as well as the biophysical importance of exploring spatiotemporal dynamics of the coupling phenomena of patterning and deformation in 3D space.
机译:这项研究演示了三维(3D)空间中的多细胞变形与化学模式结合的计算模拟。为了解决这些问题,我们提出了一种新颖的数学模型,其中反应扩散系统在单个单元格水平上离散表达,并与3D顶点模型结合。例如,为了研究图案和变形耦合产生的复杂现象,我们采用了激活剂-抑制剂系统,并将单个细胞的激活剂浓度转换为它们的生长速率。尽管该模型很简单,但通过生长单层细胞囊泡,偶联系统提供了丰富的形态动力学,例如起伏,成管和分支。有趣的是,形态变化取决于图案形成和变形之间的时间尺度差异,并且可以通过具有域生长的活化剂-抑制剂系统中的固有滞后来部分理解。重要的是,该模型可以应用于将反应扩散模式与各种细胞行为(例如变形,重排,分裂,凋亡,分化和增殖)结合的3D多细胞动力学。因此,结果证明了所提出模型的显着优势以及探索3D空间中图案和变形耦合现象的时空动力学的生物物理重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号