首页> 美国卫生研究院文献>Nature Communications >Temporal correlation detection using computational phase-change memory
【2h】

Temporal correlation detection using computational phase-change memory

机译:使用计算相变存储器的时间相关检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Conventional computers based on the von Neumann architecture perform computation by repeatedly transferring data between their physically separated processing and memory units. As computation becomes increasingly data centric and the scalability limits in terms of performance and power are being reached, alternative computing paradigms with collocated computation and storage are actively being sought. A fascinating such approach is that of computational memory where the physics of nanoscale memory devices are used to perform certain computational tasks within the memory unit in a non-von Neumann manner. We present an experimental demonstration using one million phase change memory devices organized to perform a high-level computational primitive by exploiting the crystallization dynamics. Its result is imprinted in the conductance states of the memory devices. The results of using such a computational memory for processing real-world data sets show that this co-existence of computation and storage at the nanometer scale could enable ultra-dense, low-power, and massively-parallel computing systems.
机译:基于冯·诺依曼体系结构的常规计算机通过在物理分离的处理单元和存储单元之间重复传输数据来执行计算。随着计算越来越以数据为中心,并且在性能和功能方面已达到可扩展性极限,正在积极寻求具有并置计算和存储功能的替代计算范例。一种令人着迷的方法是计算存储器,其中纳米级存储设备的物理特性用于以非冯·诺依曼方式在存储单元内执行某些计算任务。我们提出了使用一百万个相变存储设备进行实验的演示,该设备被组织用来通过利用结晶动力学来执行高级计算基元。其结果被印在存储设备的电导状态中。使用这种计算存储器处理现实世界数据集的结果表明,纳米级计算和存储的共存可以实现超密集,低功耗和大规模并行计算系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号