首页> 美国卫生研究院文献>Nature Communications >Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide
【2h】

Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide

机译:可视化单层二硫化钼中无序边缘和晶界的纳米级激子弛豫特性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Two-dimensional monolayer transition metal dichalcogenide semiconductors are ideal building blocks for atomically thin, flexible optoelectronic and catalytic devices. Although challenging for two-dimensional systems, sub-diffraction optical microscopy provides a nanoscale material understanding that is vital for optimizing their optoelectronic properties. Here we use the ‘Campanile' nano-optical probe to spectroscopically image exciton recombination within monolayer MoS2 with sub-wavelength resolution (60 nm), at the length scale relevant to many critical optoelectronic processes. Synthetic monolayer MoS2 is found to be composed of two distinct optoelectronic regions: an interior, locally ordered but mesoscopically heterogeneous two-dimensional quantum well and an unexpected ∼300-nm wide, energetically disordered edge region. Further, grain boundaries are imaged with sufficient resolution to quantify local exciton-quenching phenomena, and complimentary nano-Auger microscopy reveals that the optically defective grain boundary and edge regions are sulfur deficient. The nanoscale structure–property relationships established here are critical for the interpretation of edge- and boundary-related phenomena and the development of next-generation two-dimensional optoelectronic devices.
机译:二维单层过渡金属二硫化氢半导体是原子薄,柔性光电和催化装置的理想构建基块。尽管对于二维系统具有挑战性,但亚衍射光学显微镜提供了纳米级的材料理解,这对于优化其光电性能至关重要。在这里,我们使用“ Campanile”纳米光学探针以光谱法成像单层MoS2内的激子复合,亚波长分辨率(60nm),其长度尺度与许多关键的光电过程有关。发现合成单层MoS2由两个不同的光电区域组成:一个内部,局部有序但介观地异质的二维量子阱和一个意想不到的〜300 nm宽,能量无序的边缘区域。此外,以足够的分辨率对晶界进行成像,以量化局部激子猝灭现象,并且互补的纳米奥格显微镜表明,光学缺陷晶界和边缘区域是硫缺乏的。此处建立的纳米级结构与特性关系对于解释与边缘和边界相关的现象以及下一代二维光电器件的发展至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号