首页> 美国卫生研究院文献>Scientific Reports >Ultrasonic tracking of a sinking ball in a vibrated dense granular suspension
【2h】

Ultrasonic tracking of a sinking ball in a vibrated dense granular suspension

机译:振动致密颗粒悬浮液中沉球的超声跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Observing and understanding the motion of an intruder through opaque dense suspensions such as quicksand remains a practical and conceptual challenge. Here we use an ultrasonic probe to monitor the sinking dynamics of a steel ball in a dense glass bead packing (3D) saturated by water. We show that the frictional model developed for dry granular media can be used to describe the ball motion induced by horizontal vibration. From this rheology, we infer the static friction coefficient and effective viscosity that decrease when increasing the vibration intensity. Our main finding is that the vibration-induced reduction of the yield stress and increase of the sinking depth are presumably due to micro-slips induced at the grain contacts but without visible plastic deformation due to macroscopic rearrangements, in contrast to dry granular packings. To explain these results, we propose a mechanism of acoustic lubrication that reduces the inter-particle friction and leads to a decrease of the yield stress. This scenario is different from the mechanism of liquefaction usually invoked in loosely packed quicksands where the vibration-induced compaction increases the pore pressure and decreases the confining pressure on the solid skeleton, thus reducing the granular resistance to external load.
机译:通过不透明的密集悬浮物(如流沙)观察和理解入侵者的运动仍然是一个实际和概念上的挑战。在这里,我们使用超声波探头来监测钢球在被水饱和的致密玻璃珠填料(3D)中的沉没动力学。我们表明,为干颗粒介质开发的摩擦模型可用于描述水平振动引起的球运动。从这种流变学中,我们推断出当增加振动强度时,静摩擦系数和有效粘度会降低。我们的主要发现是,振动引起的屈服应力的减小和下沉深度的增加,可能是由于在晶粒接触处产生了微滑,但与干燥的粒状填料相比,由于宏观重排而没有可见的塑性变形。为了解释这些结果,我们提出了一种声学润滑机制,该机制可减少颗粒间的摩擦并导致屈服应力的降低。这种情况与通常在松散堆积的流沙中使用的液化机制不同,在后者中,振动引起的压实增加了孔隙压力,并降低了对固体骨架的约束压力,从而降低了颗粒对外部载荷的抵抗力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号