首页> 美国卫生研究院文献>Scientific Reports >An adjustable permeation membrane up to the separation for multicomponent gas mixture
【2h】

An adjustable permeation membrane up to the separation for multicomponent gas mixture

机译:可调节的渗透膜直至分离多组分气体混合物

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The mixture separation is of fundamental importance in the modern industry. The membrane-based separation technology has attracted considerable attention due to the high efficiency, low energy consumption, etc. However, the tradeoff between the permeability and selectivity is a crucial challenge, which is also difficult to adjust during the separation process. Based on the salt water-filled carbon nanotubes, a separation membrane with the adjustable molecular channels by the electric field is proposed in this work. The separation mechanism is clarified on the basis of the characteristic size of the molecular channel and the overall effective diameter of gas molecules. The molecular dynamics simulation is performed to examine the feasibility and validity of the designed separation membrane. The simulations on the binary gas mixture (H2 and N2) reveal the flow control and high-purity separation as the electric field intensity varies. As for the mixed gas with the three components (H2, N2 and Xe), the successive separations and the switch between the high-efficiency and high-purity separation could be achieved only through adjusting the electric field intensity. This work incorporates the control into the membrane-based separation technology, which provides a novel solution for the complex industrial separation requirement.
机译:混合物分离在现代工业中至关重要。基于膜的分离技术因其高效率,低能耗等而备受关注。但是,渗透率和选择性之间的折衷是一个关键的挑战,在分离过程中也很难调整。本文基于盐水填充的碳纳米管,提出了一种通过电场可调节分子通道的分离膜。根据分子通道的特征尺寸和气体分子的总有效直径来阐明分离机理。进行分子动力学模拟以检验设计的分离膜的可行性和有效性。对二元混合气体(H2和N2)的模拟显示了随着电场强度的变化,流量控制和高纯度分离。对于具有三种成分(H2,N2和Xe)的混合气体,仅通过调节电场强度就可以实现连续分离以及在高效率和高纯度分离之间的切换。这项工作将控制纳入基于膜的分离技术中,该技术为复杂的工业分离需求提供了一种新颖的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号