首页> 美国卫生研究院文献>Scientific Reports >Computational Design of Novel Hydrogen-Doped Oxygen-Deficient Monoclinic Zirconia with Excellent Optical Absorption and Electronic Properties
【2h】

Computational Design of Novel Hydrogen-Doped Oxygen-Deficient Monoclinic Zirconia with Excellent Optical Absorption and Electronic Properties

机译:具有优异的光吸收和电子性能的新型氢掺杂缺氧单斜氧化锆的计算设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Monoclinic ZrO2 has recently emerged as a new highly efficient material for the photovoltaic and photocatalytic applications. Herein, first-principles calculations were carried out to understand how Hydrogen doping can affect the electronic structure and optical properties of the material. The effects of Hydrogen interstitial and substitutional doping at different sites and concentrations in m-ZrO2 were examined by an extensive model study to predict the best structure with the optimal properties for use in solar energy conversion devices. Hydrogen interstitials (Hi) in pristine m-ZrO2 were found to lower the formation energy but without useful effects on the electronic or optical properties. Hydrogen mono- and co-occupying oxygen vacancy (Ov) were also investigated. At low concentration of Hydrogen mono-occupying oxygen vacancy (HOv), Hydrogen atoms introduced shallow states below the conduction band minimum (CBM) and increase the dielectric constant, which could be very useful for gate dielectric application. The number and position of such defect states strongly depend on the doping sites and concentration. At high oxygen vacancy concentration, the modeled HOv-Ov structure shows the formation of shallow and localized states that are only 1.1 eV below the CBM with significantly high dielectric constant and extended optical absorption to the infrared region. This strong absorption with the high permittivity and low exciton binding energies make the material an ideal candidate for use in solar energy harvesting devices. Finally, the band edge positions of pristine and doped structures with respect to the redox potentials of water splitting indicated that Hydrogen occupying oxygen vacancies can increase the photocatalytic activity of the material for hydrogen generation due the extremely improved optical absorption and the band gap states.
机译:单斜晶ZrO2最近已成为一种用于光伏和光催化应用的新型高效材料。本文中,进行了第一性原理计算以了解氢掺杂如何影响材料的电子结构和光学性质。通过广泛的模型研究检查了氢间质和替代掺杂在m-ZrO2中不同位置和浓度的影响,从而预测了用于太阳能转换设备的具有最佳性能的最佳结构。发现原始m-ZrO2中的氢间隙(Hi)降低了形成能,但对电子或光学性质没有有用的影响。还研究了氢的单占有和共同占有的氧空位(Ov)。在低浓度的氢单占据氧空位(HOv)下,氢原子在导带最小值(CBM)以下引入了浅态,并增加了介电常数,这对于栅极介电应用可能非常有用。这种缺陷状态的数量和位置在很大程度上取决于掺杂位点和浓度。在高氧空位浓度下,模型化的HOv-Ov结构显示出仅在CBM下仅1.1 eV的浅层和局部状态的形成,具有很高的介电常数和对红外区域的光学吸收。这种具有高介电常数和低激子结合能的强吸收性使该材料成为用于太阳能收集设备的理想候选材料。最后,相对于水分解的氧化还原电势而言,原始结构和掺杂结构的能带边缘位置表明,由于极大地改善了光吸收和带隙状态,氢占据的氧空位可以增加材料的光催化活性,从而产生氢。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号