首页> 美国卫生研究院文献>Toxicological Sciences >Comparative Computational Modeling of Airflows and Vapor Dosimetry in the Respiratory Tracts of Rat Monkey and Human
【2h】

Comparative Computational Modeling of Airflows and Vapor Dosimetry in the Respiratory Tracts of Rat Monkey and Human

机译:大鼠猴子和人的呼吸道中气流和蒸气剂量测定的比较计算模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computational fluid dynamics (CFD) models are useful for predicting site-specific dosimetry of airborne materials in the respiratory tract and elucidating the importance of species differences in anatomy, physiology, and breathing patterns. We improved the imaging and model development methods to the point where CFD models for the rat, monkey, and human now encompass airways from the nose or mouth to the lung. A total of 1272, 2172, and 135 pulmonary airways representing 17±7, 19±9, or 9±2 airway generations were included in the rat, monkey and human models, respectively. A CFD/physiologically based pharmacokinetic model previously developed for acrolein was adapted for these anatomically correct extended airway models. Model parameters were obtained from the literature or measured directly. Airflow and acrolein uptake patterns were determined under steady-state inhalation conditions to provide direct comparisons with prior data and nasal-only simulations. Results confirmed that regional uptake was sensitive to airway geometry, airflow rates, acrolein concentrations, air:tissue partition coefficients, tissue thickness, and the maximum rate of metabolism. Nasal extraction efficiencies were predicted to be greatest in the rat, followed by the monkey, and then the human. For both nasal and oral breathing modes in humans, higher uptake rates were predicted for lower tracheobronchial tissues than either the rat or monkey. These extended airway models provide a unique foundation for comparing material transport and site-specific tissue uptake across a significantly greater range of conducting airways in the rat, monkey, and human than prior CFD models.
机译:计算流体动力学(CFD)模型可用于预测呼吸道中机载材料的特定位置剂量,并阐明物种差异在解剖学,生理学和呼吸方式方面的重要性。我们改进了成像和模型开发方法,以至于老鼠,猴子和人类的CFD模型现在涵盖了从鼻子或嘴到肺的气道。大鼠,猴和人类模型中分别包括代表17±7、19±9或9±2气代的总共1272、2172和135个肺气道。先前为丙烯醛开发的基于CFD /生理学的药代动力学模型适用于这些解剖学正确的扩展气道模型。模型参数可从文献中获得或直接测量。在稳态吸入条件下确定气流和丙烯醛的摄取模式,以提供与先前数据和仅鼻腔模拟的直接比较。结果证实区域摄取对气道几何形状,气流速率,丙烯醛浓度,空气:组织分配系数,组织厚度和最大代谢速率敏感。鼻提取效率预计在大鼠中最高,其次是猴子,然后是人类。对于人的鼻呼吸和口腔呼吸模式,预计气管支气管组织的吸收率高于大鼠或猴子。这些扩展的气道模型为比较先前的CFD模型在大鼠,猴和人的更大范围的传导气道中比较物质运输和特定部位组织摄取提供了独特的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号