首页> 美国卫生研究院文献>Medical Physics >Frequency distribution of the nanoparticle magnetization in the presence of a static as well as a harmonic magnetic field
【2h】

Frequency distribution of the nanoparticle magnetization in the presence of a static as well as a harmonic magnetic field

机译:在静态和谐波磁场存在下纳米粒子磁化的频率分布

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We explore the properties of the signal from magnetic nanoparticles. The nanoparticle signal has been used to generate images in magnetic particle imaging (MPI). MPI promises to be one of the most sensitive methods of imaging small numbers magnetic nanoparticles and therefore shows promise for molecular imaging. The nanoparticle signal is generated with a pure sinusoidal magnetic field that repeatedly saturates the nanoparticles creating harmonics in the induced magnetization that are easily isolated from the driving field. Signal from a selected position is isolated using a static magnetic field to completely saturate all of the particles outside a voxel enabling an image to be formed voxel by voxel. The signal produced by the magnetization of the nanoparticles contains only odd harmonics. However, it is demonstrated experimentally that with the addition of a static magnetic field bias even harmonics are introduced which increase the total signal significantly. Further, the distribution of signal among the harmonics depends on the static bias field so that information might be used to localize the nanoparticle distribution. Finally, the field required to completely saturate nanoparticles can be quite large and theory predicts that the field required is determined by the smallest nanoparticles in the sample.
机译:我们探索了磁性纳米粒子信号的特性。纳米粒子信号已用于在磁性粒子成像(MPI)中生成图像。 MPI有望成为对少量磁性纳米颗粒成像的最灵敏方法之一,因此对分子成像也显示出了希望。纳米粒子信号由纯正弦磁场产生,该磁场使纳米粒子反复饱和,从而在感应磁化中产生谐波,该谐波易于与驱动场隔离。使用静磁场隔离来自选定位置的信号,以完全饱和体素外部的所有粒子,从而可以通过体素形成图像。通过纳米颗粒的磁化产生的信号仅包含奇次谐波。然而,实验证明,通过添加静态磁场偏置,甚至会引入谐波,从而显着增加总信号。此外,谐波之间的信号分布取决于静态偏置场,因此可以使用信息来定位纳米粒子分布。最后,完全饱和纳米颗粒所需的电场可能很大,理论预测,所需电场由样品中最小的纳米颗粒决定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号