首页> 美国卫生研究院文献>Molecular Biology and Evolution >Lateral Gene Transfer and Gene Duplication Played a Key Role in the Evolution of Mastigamoeba balamuthi Hydrogenosomes
【2h】

Lateral Gene Transfer and Gene Duplication Played a Key Role in the Evolution of Mastigamoeba balamuthi Hydrogenosomes

机译:侧向基因转移和基因复制在马斯蒂格姆巴巴拉莫蒂氢体的进化中起关键作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Lateral gene transfer (LGT) is an important mechanism of evolution for protists adapting to oxygen-poor environments. Specifically, modifications of energy metabolism in anaerobic forms of mitochondria (e.g., hydrogenosomes) are likely to have been associated with gene transfer from prokaryotes. An interesting question is whether the products of transferred genes were directly targeted into the ancestral organelle or initially operated in the cytosol and subsequently acquired organelle-targeting sequences. Here, we identified key enzymes of hydrogenosomal metabolism in the free-living anaerobic amoebozoan Mastigamoeba balamuthi and analyzed their cellular localizations, enzymatic activities, and evolutionary histories. Additionally, we characterized 1) several canonical mitochondrial components including respiratory complex II and the glycine cleavage system, 2) enzymes associated with anaerobic energy metabolism, including an unusual D-lactate dehydrogenase and acetyl CoA synthase, and 3) a sulfate activation pathway. Intriguingly, components of anaerobic energy metabolism are present in at least two gene copies. For each component, one copy possesses an mitochondrial targeting sequence (MTS), whereas the other lacks an MTS, yielding parallel cytosolic and hydrogenosomal extended glycolysis pathways. Experimentally, we confirmed that the organelle targeting of several proteins is fully dependent on the MTS. Phylogenetic analysis of all extended glycolysis components suggested that these components were acquired by LGT. We propose that the transformation from an ancestral organelle to a hydrogenosome in the M. balamuthi lineage involved the lateral acquisition of genes encoding extended glycolysis enzymes that initially operated in the cytosol and that established a parallel hydrogenosomal pathway after gene duplication and MTS acquisition.
机译:横向基因转移(LGT)是原生生物适应缺氧环境的重要进化机制。具体而言,厌氧形式的线粒体(例如,氢核小体)中能量代谢的改变可能与原核生物的基因转移有关。一个有趣的问题是,转移的基因产物是直接靶向祖细胞器还是最初在细胞溶胶中操作,然后获得后的细胞器靶向序列。在这里,我们确定了自由生活的厌氧变形虫马斯达默巴巴拉默斯人中的核糖体代谢关键酶,并分析了它们的细胞定位,酶活性和进化历史。此外,我们表征了1)几种典型的线粒体成分,包括呼吸道复合物II和甘氨酸裂解系统,2)与厌氧能量代谢相关的酶,包括异常的D-乳酸脱氢酶和乙酰辅酶A合酶,以及3)硫酸盐激活途径。有趣的是,厌氧能量代谢的成分存在于至少两个基因拷贝中。对于每种成分,一个拷贝具有线粒体靶向序列(MTS),而另一个拷贝则缺少MTS,从而产生平行的胞质和氢染色体扩展糖酵解途径。通过实验,我们证实了靶向多种蛋白质的细胞器完全依赖MTS。对所有扩展糖酵解成分的系统进化分析表明,这些成分是通过LGT获得的。我们建议,从祖细胞器到巴拉默斯氏菌谱系中的氢核小体的转化涉及侧向获取编码延伸的糖酵解酶的基因的侧向获取,该酶最初在细胞质中起作用,并在基因复制和MTS获取后建立了平行的氢染色体途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号