首页> 美国卫生研究院文献>Philosophical transactions. Series A Mathematical physical and engineering sciences >Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon
【2h】

Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon

机译:挥发性稳定同位素的蒸发分离及其对月球起源的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Moon is depleted in volatile elements relative to the Earth and Mars. Low abundances of volatile elements, fractionated stable isotope ratios of S, Cl, K and Zn, high μ (238U/204Pb) and long-term Rb/Sr depletion are distinguishing features of the Moon, relative to the Earth. These geochemical characteristics indicate both inheritance of volatile-depleted materials that formed the Moon and planets and subsequent evaporative loss of volatile elements that occurred during lunar formation and differentiation. Models of volatile loss through localized eruptive degassing are not consistent with the available S, Cl, Zn and K isotopes and abundance data for the Moon. The most probable cause of volatile depletion is global-scale evaporation resulting from a giant impact or a magma ocean phase where inefficient volatile loss during magmatic convection led to the present distribution of volatile elements within mantle and crustal reservoirs. Problems exist for models of planetary volatile depletion following giant impact. Most critically, in this model, the volatile loss requires preferential delivery and retention of late-accreted volatiles to the Earth compared with the Moon. Different proportions of late-accreted mass are computed to explain present-day distributions of volatile and moderately volatile elements (e.g. Pb, Zn; 5 to >10%) relative to highly siderophile elements (approx. 0.5%) for the Earth. Models of early magma ocean phases may be more effective in explaining the volatile loss. Basaltic materials (e.g. eucrites and angrites) from highly differentiated airless asteroids are volatile-depleted, like the Moon, whereas the Earth and Mars have proportionally greater volatile contents. Parent-body size and the existence of early atmospheres are therefore likely to represent fundamental controls on planetary volatile retention or loss.
机译:相对于地球和火星,月亮中的挥发性元素被消耗掉。挥发性元素含量低,S,Cl,K和Zn的分级稳定同位素比,高μ( 238 U / 204 Pb)和长期Rb / Sr耗尽是月球相对于地球的显着特征。这些地球化学特征既表明了形成月球和行星的挥发性物质的继承,又表明了在月球形成和分化过程中发生的挥发性元素的随后蒸发损失。通过局部喷发脱气造成的挥发损失模型与现有的S,Cl,Zn和K同位素以及月球丰度数据不一致。挥发物耗竭的最可能原因是巨大的撞击或岩浆海相造成的全球范围的蒸发,在岩浆对流过程中挥发物的低效损失导致了地幔和地壳储层中挥发性元素的当前分布。巨大撞击后行星挥发物消耗模型存在问题。最关键的是,在这种模型中,与月球相比,挥发物的损失需要优先吸收和吸收后期积聚的挥发物到地球。计算了不同比例的后期积聚质量,以解释相对于地球上高度嗜铁性元素(约0.5%)而言,挥发性和中等挥发性元素(例如Pb,Zn; 5至> 10%)的当前分布。早期岩浆海洋阶段的模型可能更有效地解释了挥发性损失。来自高度分化的无气小行星的玄武岩物质(例如,玉石和天使石)的挥发物含量降低,如月亮,而地球和火星的挥发物含量成比例地增加。因此,母体的大小和早期大气的存在很可能代表着对行星挥发物保留或损失的基本控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号