首页> 美国卫生研究院文献>Medical Physics >Development and evaluation of a model-based downscatter compensation method for quantitative I-131 SPECT
【2h】

Development and evaluation of a model-based downscatter compensation method for quantitative I-131 SPECT

机译:基于模型的定量I-131 SPECT向下散射补偿方法的开发和评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Purpose: The radionuclide 131I has found widespread use in targeted radionuclide therapy (TRT), partly due to the fact that it emits photons that can be imaged to perform treatment planning or posttherapy dose verification as well as beta rays that are suitable for therapy. In both the treatment planning and dose verification applications, it is necessary to estimate the activity distribution in organs or tumors at several time points. In vivo estimates of the 131I activity distribution at each time point can be obtained from quantitative single-photon emission computed tomography (QSPECT) images and organ activity estimates can be obtained either from QSPECT images or quantification of planar projection data. However, in addition to the photon used for imaging, 131I decay results in emission of a number of other higher-energy photons with significant abundances. These higher-energy photons can scatter in the body, collimator, or detector and be counted in the 364 keV photopeak energy window, resulting in reduced image contrast and degraded quantitative accuracy; these photons are referred to as downscatter. The goal of this study was to develop and evaluate a model-based downscatter compensation method specifically designed for the compensation of high-energy photons emitted by 131I and detected in the imaging energy window.>Methods: In the evaluation study, we used a Monte Carlo simulation (MCS) code that had previously been validated for other radionuclides. Thus, in preparation for the evaluation study, we first validated the code for 131I imaging simulation by comparison with experimental data. Next, we assessed the accuracy of the downscatter model by comparing downscatter estimates with MCS results. Finally, we combined the downscatter model with iterative reconstruction-based compensation for attenuation (A) and scatter (S) and the full (D) collimator-detector response of the 364 keV photons to form a comprehensive compensation method. We evaluated this combined method in terms of quantitative accuracy using the realistic 3D NCAT phantom and an activity distribution obtained from patient studies. We compared the accuracy of organ activity estimates in images reconstructed with and without addition of downscatter compensation from projections with and without downscatter contamination.>Results: We observed that the proposed method provided substantial improvements in accuracy compared to no downscatter compensation and had accuracies comparable to reconstructions from projections without downscatter contamination.>Conclusions: The results demonstrate that the proposed model-based downscatter compensation method is effective and may have a role in quantitative 131I imaging.
机译:>目的:放射性核素 131 I已在靶向放射性核素治疗(TRT)中得到广泛使用,部分原因是它发出的光子可以成像以执行治疗计划或治疗后剂量验证以及适合治疗的β射线。在治疗计划和剂量验证应用中,有必要估计几个时间点在器官或肿瘤中的活性分布。可以从定量单光子发射计算机断层扫描(QSPECT)图像获得每个时间点的 131 I活性分布的体内估计值,并且可以从QSPECT图像或平面量化得到器官活性估计值投影数据。但是,除了用于成像的光子以外, 131 I衰变还导致许多其他高能光子的发射,这些光子具有明显的丰度。这些较高能量的光子会在人体,准直仪或检测器中散射,并在364 keV的光峰能量窗口中计数,从而降低图像对比度并降低定量精度;这些光子称为向下散射。这项研究的目的是开发和评估一种基于模型的向下散射补偿方法,该方法专门设计用于补偿 131 I发射并在成像能量窗口中检测到的高能光子。>方法::在评估研究中,我们使用了此前已针对其他放射性核素进行过验证的蒙特卡洛模拟(MCS)代码。因此,在准备进行评估研究时,我们首先通过与实验数据进行比较来验证 131 I成像仿真的代码。接下来,我们通过将下行散射估计值与MCS结果进行比较来评估下行散射模型的准确性。最后,我们将向下散射模型与基于迭代重建的364 keV光子的衰减(A)和散射(S)以及完整(D)准直仪-检测器响应的补偿相结合,以形成一种综合的补偿方法。我们使用逼真的3D NCAT幻像和从患者研究获得的活性分布,在定量准确性方面评估了这种组合方法。我们比较了在有和没有向下散射污染的情况下从投影中添加和不添加向下散射补偿的图像中器官活动估计的准确性。>结果:我们观察到,与没有向下散射相比,该方法在准确性上有了实质性的提高>结论:结果表明,基于模型的下行散射补偿方法是有效的,可能在定量 131 我成像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号