首页> 美国卫生研究院文献>Plant and Cell Physiology >Identification of kaonashi Mutants Showing Abnormal Pollen Exine Structure in Arabidopsis thaliana
【2h】

Identification of kaonashi Mutants Showing Abnormal Pollen Exine Structure in Arabidopsis thaliana

机译:拟南芥花粉外壁结构异常的kaonashi突变体的鉴定

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Exine, the outermost architecture of pollen walls, protects male gametes from the environment by virtue of its chemical and physical stability. Although much effort has been devoted to revealing the mechanism of exine construction, still little is known about it. To identify the genes involved in exine formation, we screened for Arabidopsis mutants with pollen grains exhibiting abnormal exine structure using scanning electron microscopy. We isolated 12 mutants, kaonashi1 (kns1) to kns12, and classified them into four types. The type 1 mutants showed a collapsed exine structure resembling a mutant of the callose synthase gene, suggesting that the type 1 genes are involved in callose wall synthesis. The type 2 mutant showed remarkably thin exine structure, presumably due to defective primexine thickening. The type 3 mutants showed defective tectum formation, and thus type 3 genes are required for primordial tectum formation or biosynthesis and deposition of sporopollenin. The type 4 mutants showed densely distributed baculae, suggesting type 4 genes determine the position of probacula formation. All identified kns mutants were recessive, suggesting that these KNS genes are expressed in sporophytic cells. Unlike previously known exine-defective mutants, most of the kns mutants showed normal fertility. Map-based cloning revealed that KNS2, one of the type 4 genes, encodes sucrose phosphate synthase. This enzyme might be required for synthesis of primexine or callose wall, which are both important for probacula positioning. Analysis of kns mutants will provide new knowledge to help understand the mechanism of biosynthesis of exine components and the construction of exine architecture.
机译:Exine是花粉壁的最外层建筑,凭借其化学和物理稳定性,可保护雄配子免受环境侵害。尽管已经付出了很多努力来揭示外在构建的机制,但对其了解甚少。为了鉴定涉及外泌体形成的基因,我们使用扫描电子显微镜筛选了具有显示出异常外泌体结构的花粉粒的拟南芥突变体。我们分离了12个突变体,kaonashi1(kns1)到kns12,并将它们分为四种类型。 1型突变体显示出类似于ex质合酶基因突变体的折叠的外在结构,表明1型基因参与了ose质壁的合成。 2型突变体显示出极薄的外膜结构,可能是由于缺陷素的增厚所致。 3型突变体显示出缺陷的顶盖形成,因此3型基因是原始顶盖形成或孢粉的生物合成和沉积所必需的。 4型突变体显示杆状杆菌分布密集,表明4型基因决定了细菌形成的位置。所有确定的kns突变体都是隐性的,表明这些KNS基因在孢子体细胞中表达。与以前已知的外因缺陷型突变体不同,大多数kns突变体显示出正常的生育力。基于图的克隆显示,KNS2是4型基因之一,编码蔗糖磷酸合酶。这种酶可能是合成primxine或call质壁所必需的,这两者对于前列腺的定位都很重要。 kns突变体的分析将提供新的知识,以帮助了解外在成分的生物合成机制和外在结构的构建。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号