首页> 美国卫生研究院文献>Philosophical transactions. Series A Mathematical physical and engineering sciences >Reaction and relaxation at surface hotspots: using molecular dynamics and the energy-grained master equation to describe diamond etching
【2h】

Reaction and relaxation at surface hotspots: using molecular dynamics and the energy-grained master equation to describe diamond etching

机译:表面热点处的反应和弛豫:使用分子动力学和能量粒度主方程来描述金刚石蚀刻

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The extent to which vibrational energy transfer dynamics can impact reaction outcomes beyond the gas phase remains an active research question. Molecular dynamics (MD) simulations are the method of choice for investigating such questions; however, they can be extremely expensive, and therefore it is worth developing cheaper models that are capable of furnishing reasonable results. This paper has two primary aims. First, we investigate the competition between energy relaxation and reaction at ‘hotspots’ that form on the surface of diamond during the chemical vapour deposition process. To explore this, we developed an efficient reactive potential energy surface by fitting an empirical valence bond model to higher-level ab initio electronic structure theory. We then ran 160 000 NVE trajectories on a large slab of diamond, and the results are in reasonable agreement with experiment: they suggest that energy dissipation from surface hotspots is complete within a few hundred femtoseconds, but that a small fraction of CH3 does in fact undergo dissociation prior to the onset of thermal equilibrium. Second, we developed and tested a general procedure to formulate and solve the energy-grained master equation (EGME) for surface chemistry problems. The procedure we outline splits the diamond slab into system and bath components, and then evaluates microcanonical transition-state theory rate coefficients in the configuration space of the system atoms. Energy transfer from the system to the bath is estimated using linear response theory from a single long MD trajectory, and used to parametrize an energy transfer function which can be input into the EGME. Despite the number of approximations involved, the surface EGME results are in reasonable agreement with the NVE MD simulations, but considerably cheaper. The results are encouraging, because they offer a computationally tractable strategy for investigating non-equilibrium reaction dynamics at surfaces for a broader range of systems.This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’.
机译:振动能量传递动力学在多大程度上可以影响气相以外的反应结果仍然是一个活跃的研究问题。分子动力学(MD)模拟是研究此类问题的首选方法。但是,它们可能会非常昂贵,因此值得开发能够提供合理结果的便宜模型。本文有两个主要目的。首先,我们研究了化学气相沉积过程中在钻石表面形成的“热点”处能量弛豫与反应之间的竞争。为了探索这一点,我们通过将经验价键模型拟合到更高级别的从头算电子结构理论来开发了有效的无功势能表面。然后,我们在一块大钻石板上运行了160 000 NVE轨迹,其结果与实验基本吻合:它们表明表面热点的能量消散在几百飞秒之内就完成了,但实际上一小部分CH3确实做到了在热平衡开始之前经历解离。其次,我们开发并测试了一种通用程序,用于公式化和求解表面化学问题的能量粒度主方程(EGME)。我们概述的程序将金刚石平板分为系统和镀液组件,然后在系统原子的配置空间中评估微规范过渡态理论速率系数。使用线性响应理论从单个长MD轨迹估计从系统到浴池的能量转移,并将其参数化可以输入到EGME中的能量转移函数。尽管涉及许多近似值,但表面EGME结果与NVE MD模拟在合理范围内一致,但价格便宜得多。结果令人鼓舞,因为它们为研究更广泛的系统表面上的非平衡反应动力学提供了一种易于计算的策略。本文是主题问题``非平衡和非统计动力学的理论和计算研究''的一部分在气相,冷凝相和界面处。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号