首页> 美国卫生研究院文献>Journal of Experimental Botany >Growth and physiological responses of isohydric and anisohydric poplars to drought
【2h】

Growth and physiological responses of isohydric and anisohydric poplars to drought

机译:等水和等水杨树的生长及其对干旱的生理响应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Understanding how different plants prioritize carbon gain and drought vulnerability under a variable water supply is important for predicting which trees will maximize woody biomass production under different environmental conditions. Here, Populus balsamifera (BS, isohydric genotype), P. simonii (SI, previously uncharacterized stomatal behaviour), and their cross, P. balsamifera x simonii (BSxSI, anisohydric genotype) were studied to assess the physiological basis for biomass accumulation and water-use efficiency across a range of water availabilities. Under ample water, whole plant stomatal conductance (gs), transpiration (E), and growth rates were higher in anisohydric genotypes (SI and BSxSI) than in isohydric poplars (BS). Under drought, all genotypes regulated the leaf to stem water potential gradient via changes in gs, synchronizing leaf hydraulic conductance (Kleaf) and E: isohydric plants reduced Kleaf, gs, and E, whereas anisohydric genotypes maintained high Kleaf and E, which reduced both leaf and stem water potentials. Nevertheless, SI poplars reduced their plant hydraulic conductance (Kplant) during water stress and, unlike, BSxSI plants, recovered rapidly from drought. Low gs of the isohydric BS under drought reduced CO2 assimilation rates and biomass potential under moderate water stress. While anisohydric genotypes had the fastest growth under ample water and higher photosynthetic rates under increasing water stress, isohydric poplars had higher water-use efficiency. Overall, the results indicate three strategies for how closely related biomass species deal with water stress: survival-isohydric (BS), sensitive-anisohydric (BSxSI), and resilience-anisohydric (SI). Implications for woody biomass growth, water-use efficiency, and survival under variable environmental conditions are discussed.
机译:了解不同植物在可变供水条件下如何优先考虑碳增加和干旱脆弱性,对于预测哪些树木将在不同环境条件下最大化木质生物量的生产非常重要。在这里,研究了Palulus balsamifera(BS,等渗基因型),P。simonii(SI,以前未表征的气孔行为)及其杂交,P。balsamifera x simonii(BSxSI,等渗基因型),以评估生物量积累和水分的生理基础。各种水利用效率。在充足的水分下,等渗基因型(SI和BSxSI)的全株气孔导度(gs),蒸腾作用(E)和生长速率要比等渗杨树(BS)高。在干旱下,所有基因型均通过gs的变化调节叶片至茎水势梯度,使叶片的水力传导率(Kleaf)和E同步:等渗基因型降低Kleaf,gs和E,而等渗基因型则保持较高的Kleaf和E,这同时降低了Kleaf和E叶和茎的水势。然而,SI杨树在水分胁迫期间降低了植物的水力传导率(Kplant),并且与BSxSI植物不同,它可以从干旱中快速恢复。在干旱条件下,低克的等渗BS降低了CO2同化率和生物量潜力。在水分充足的情况下,等位基因型的生长最快,而在水分胁迫下,其光合速率更高,而等位基因的杨树的水分利用效率更高。总体而言,结果表明生物质物种如何密切应对水分胁迫的三种策略:生存等渗(BS),敏感等渗(BSxSI)和适应力等渗(SI)。讨论了木质生物量的增长,水分利用效率以及在各种环境条件下的生存情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号