首页> 美国卫生研究院文献>Journal of Applied Physiology >Modeling oxygenation in venous blood and skeletal muscle in response to exercise using near-infrared spectroscopy
【2h】

Modeling oxygenation in venous blood and skeletal muscle in response to exercise using near-infrared spectroscopy

机译:使用近红外光谱法对运动引起的静脉血和骨骼肌中的氧合作用进行建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Noninvasive, continuous measurements in vivo are commonly used to make inferences about mechanisms controlling internal and external respiration during exercise. In particular, the dynamic response of muscle oxygenation () measured by near-infrared spectroscopy (NIRS) is assumed to be correlated to that of venous oxygen saturation (SvO2) measured invasively. However, there are situations where the dynamics of and SvO2 do not follow the same pattern. A quantitative analysis of venous and muscle oxygenation dynamics during exercise is necessary to explain the links between different patterns observed experimentally. For this purpose, a mathematical model of oxygen transport and utilization that accounts for the relative contribution of hemoglobin (Hb) and myoglobin (Mb) to the NIRS signal was developed. This model includes changes in microvascular composition within skeletal muscle during exercise and integrates experimental data in a consistent and mechanistic manner. Three subjects (age 25.6 ± 0.6 yr) performed square-wave moderate exercise on a cycle ergometer under normoxic and hypoxic conditions while muscle oxygenation (Coxy) and deoxygenation (Cdeoxy) were measured by NIRS. Under normoxia, the oxygenated Hb/Mb concentration (Coxy) drops rapidly at the onset of exercise and then increases monotonically. Under hypoxia, Coxy decreases exponentially to a steady state within ∼2 min. In contrast, model simulations of venous oxygen concentration show an exponential decrease under both conditions due to the imbalance between oxygen delivery and consumption at the onset of exercise. Also, model simulations that distinguish the dynamic responses of oxy-and deoxygenated Hb (HbO2, HHb) and Mb (MbO2, HMb) concentrations (Coxy = HbO2 + MbO2; Cdeoxy = HHb + HMb) show that Hb and Mb contributions to the NIRS signal are comparable. Analysis of NIRS signal components during exercise with a mechanistic model of oxygen transport and metabolism indicates that changes in oxygenated Hb and Mb are responsible for different patterns of and SvO2 dynamics observed under normoxia and hypoxia.
机译:体内非侵入性连续测量通常用于推断运动过程中控制内部和外部呼吸的机制。特别地,假定通过近红外光谱法(NIRS)测量的肌肉氧合动态响应与有创测量的静脉血氧饱和度(SvO2)相关。但是,在某些情况下,SvO2和SvO2的动力学不遵循相同的模式。运动过程中静脉和肌肉氧合动力学的定量分析对于解释实验观察到的不同模式之间的联系是必要的。为此目的,开发了一种氧传输和利用的数学模型,该模型解释了血红蛋白(Hb)和肌红蛋白(Mb)对NIRS信号的相对贡献。该模型包括运动期间骨骼肌内微血管组成的变化,并以一致且机械的方式整合实验数据。三名受试者(年龄25.6±0.6岁)在常氧和低氧条件下,在脚踏车测力计上进行了方波适度运动,同时通过NIRS测量了肌肉的氧合(Coxy)和脱氧(Cdeoxy)。在常氧下,运动开始时,氧化的Hb / Mb浓度(Coxy)迅速下降,然后单调增加。在缺氧条件下,Coxy在约2分钟内呈指数下降至稳态。相反,由于运动开始时氧气输送和消耗之间的不平衡,静脉血氧浓度的模型模拟显示在两种情况下均呈指数下降。此外,区分氧和脱氧Hb(HbO2,HHb)和Mb(MbO2,HMb)浓度(Coxy = HbO2 + MbO2; Cdeoxy = HHb + HMb)动态响应的模型仿真表明,Hb和Mb对NIRS的贡献信号是可比的。在运动过程中使用氧气传输和代谢机制模型对NIRS信号成分进行的分析表明,氧化型Hb和Mb的变化与常氧和低氧条件下观察到的SvO2动态和SvO2动力学的不同模式有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号