首页> 美国卫生研究院文献>Journal of Applied Physiology >Atelectrauma disrupts pulmonary epithelial barrier integrity and alters the distribution of tight junction proteins ZO-1 and claudin 4
【2h】

Atelectrauma disrupts pulmonary epithelial barrier integrity and alters the distribution of tight junction proteins ZO-1 and claudin 4

机译:Atelectrauma破坏肺上皮屏障完整性并改变紧密连接蛋白ZO-1和claudin 4的分布

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mechanical ventilation inevitably exposes the delicate tissues of the airways and alveoli to abnormal mechanical stresses that can induce pulmonary edema and exacerbate conditions such as acute respiratory distress syndrome. The goal of our research is to characterize the cellular trauma caused by the transient abnormal fluid mechanical stresses that arise when air is forced into a liquid-occluded airway (i.e., atelectrauma). Using a fluid-filled, parallel-plate flow chamber to model the “airway reopening” process, our in vitro study examined consequent increases in pulmonary epithelial plasma membrane rupture, paracellular permeability, and disruption of the tight junction (TJ) proteins zonula occludens-1 and claudin-4. Computational analysis predicts the normal and tangential surface stresses that develop between the basolateral epithelial membrane and underlying substrate due to the interfacial stresses acting on the apical cell membrane. These simulations demonstrate that decreasing the velocity of reopening causes a significant increase in basolateral surface stresses, particularly in the region between neighboring cells where TJs concentrate. Likewise, pulmonary epithelial wounding, paracellular permeability, and TJ protein disruption were significantly greater following slower reopening. This study thus demonstrates that maintaining a higher velocity of reopening, which reduces the damaging fluid stresses acting on the airway wall, decreases the mechanical stresses on the basolateral cell surface while protecting cells from plasma membrane rupture and promoting barrier integrity.
机译:机械通气不可避免地使气道和肺泡的脆弱组织暴露于异常的机械应力下,该异常的机械应力会诱发肺水肿并加剧诸如急性呼吸窘迫综合征的症状。我们研究的目的是表征由空气被迫进入液体阻塞的气道(即肺不张)时产生的瞬时异常流体机械应力引起的细胞损伤。我们使用一个充满流体的平行板流动室来模拟“气道重新开放”过程,我们的体外研究检查了肺上皮质膜破裂,旁细胞通透性增加以及紧密连接(TJ)蛋白小带闭合的破坏- 1和claudin-4。计算分析预测由于作用在根尖细胞膜上的界面应力,基底外侧上皮膜和下面的基底之间会产生正切表面应力。这些模拟表明,降低重新打开速度会导致基底外侧表面应力的显着增加,尤其是在TJ集中的相邻单元之间的区域。同样,重新开放较慢后,肺上皮损伤,细胞旁通透性和TJ蛋白破坏也明显增加。因此,这项研究表明,保持较高的重开速度可减少作用在气道壁上的破坏性液体应力,降低基底外侧细胞表面的机械应力,同时保护细胞免受质膜破裂并促进屏障完整性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号