首页> 美国卫生研究院文献>Journal of Biomechanical Engineering >Geometric Hysteresis of Alveolated Ductal Architecture
【2h】

Geometric Hysteresis of Alveolated Ductal Architecture

机译:蜂窝状管状建筑的几何滞后

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Low Reynolds number airflow in the pulmonary acinus and aerosol particle kinetics therein are significantly conditioned by the nature of the tidal motion of alveolar duct geometry. At least two components of the ductal structure are known to exhibit stress-strain hysteresis: smooth muscle within the alveolar entrance rings, and surfactant at the air-tissue interface. We hypothesize that the geometric hysteresis of the alveolar duct is largely determined by the interaction of the amount of smooth muscle and connective tissue in ductal rings, septal tissue properties, and surface tension-surface area characteristics of surfactant. To test this hypothesis, we have extended the well-known structural model of the alveolar duct by Wilson and Bachofen (1982, “A Model for Mechanical Structure of the Alveolar Duct,” J. Appl. Physiol. >52(4), pp. 1064–1070) by adding realistic elastic and hysteretic properties of (1) the alveolar entrance ring, (2) septal tissue, and (3) surfactant. With realistic values for tissue and surface properties, we conclude that: (1) there is a significant, and underappreciated, amount of geometric hysteresis in alveolar ductal architecture; and (2) the contribution of smooth muscle and surfactant to geometric hysteresis are of opposite senses, tending toward cancellation. Quantitatively, the geometric hysteresis found experimentally by Miki et al. (1993, “Geometric Hysteresis in Pulmonary Surface-to-Volume Ratio during Tidal Breathing,” J. Appl. Physiol. >75(4),pp. 1630–1636) is consistent with little or no smooth muscle tone in anesthetizedrabbits in control conditions, and with substantial smooth muscle activation followingmethacholine challenge. The observed local hysteretic boundary motion of the acinar duct wouldresult in irreversible acinar flow fields, which might be important mechanistic contributors toaerosol mixing and deposition deep in the lung.
机译:肺泡中的低雷诺数气流和其中的气溶胶颗粒动力学受到肺泡管几何结构潮汐运动的影响。已知导管结构的至少两个组件表现出应力应变滞后现象:在肺泡入口环内的平滑肌和在空气组织界面的表面活性剂。我们假设,肺泡管的几何滞后很大程度上取决于导管环中平滑肌和结缔组织的数量,间隔组织的性质以及表面活性剂的表面张力-表面积特性的相互作用。为了验证这一假设,我们扩展了Wilson和Bachofen(1982,“肺泡导管机械结构的模型”,J。Appl。Physiol。> 52 (4),第1064–1070页),增加(1)牙槽入口环,(2)隔隔组织和(3)表面活性剂的实际弹性和滞后特性。利用组织和表面特性的实际值,我们得出以下结论:(1)肺泡导管结构中存在大量且未得到充分认识的几何滞后; (2)平滑肌和表面活性剂对几何滞后的贡献是相反的,倾向于抵消。从数量上看,Miki等人通过实验发现了几何迟滞。 (1993年,“潮气呼吸过程中肺表面与容积之比的几何滞后”,《生理学杂志》,> 75 (4),pp。1630–1636)与麻醉时几乎没有平滑肌音一致兔子处于对照条件下,随后具有明显的平滑肌激活乙酰甲胆碱挑战。观察到的腺泡导管的局部滞后边界运动将导致不可逆的泡孔流场,这可能是导致泡孔流失的重要机理。气溶胶在肺深处混合和沉积。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号