首页> 美国卫生研究院文献>Journal of Biomechanical Engineering >Methodology for Computational Fluid Dynamic Validation for Medical Use: Application to Intracranial Aneurysm
【2h】

Methodology for Computational Fluid Dynamic Validation for Medical Use: Application to Intracranial Aneurysm

机译:医用计算流体动力学验证的方法学:在颅内动脉瘤中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computational fluid dynamics (CFD) is a promising tool to aid in clinical diagnoses of cardiovascular diseases. However, it uses assumptions that simplify the complexities of the real cardiovascular flow. Due to high-stakes in the clinical setting, it is critical to calculate the effect of these assumptions in the CFD simulation results. However, existing CFD validation approaches do not quantify error in the simulation results due to the CFD solver’s modeling assumptions. Instead, they directly compare CFD simulation results against validation data. Thus, to quantify the accuracy of a CFD solver, we developed a validation methodology that calculates the CFD model error (arising from modeling assumptions). Our methodology identifies independent error sources in CFD and validation experiments, and calculates the model error by parsing out other sources of error inherent in simulation and experiments. To demonstrate the method, we simulated the flow field of a patient-specific intracranial aneurysm (IA) in the commercial CFD software star-ccm+. Particle image velocimetry (PIV) provided validation datasets for the flow field on two orthogonal planes. The average model error in the star-ccm+ solver was 5.63 ± 5.49% along the intersecting validation line of the orthogonal planes. Furthermore, we demonstrated that our validation method is superior to existing validation approaches by applying three representative existing validation techniques to our CFD and experimental dataset, and comparing the validation results. Our validation methodology offers a streamlined workflow to extract the “true” accuracy of a CFD solver.
机译:计算流体动力学(CFD)是有前途的工具,可帮助临床诊断心血管疾病。但是,它使用的假设简化了实际心血管流动的复杂性。由于临床环境中的高风险,因此在CFD模拟结果中计算这些假设的影响至关重要。但是,由于CFD求解器的建模假设,现有的CFD验证方法无法量化仿真结果中的误差。相反,他们直接将CFD模拟结果与验证数据进行比较。因此,为了量化CFD求解器的准确性,我们开发了一种验证方法,该方法可以计算CFD模型误差(从建模假设中得出)。我们的方法可以识别CFD和验证实验中的独立误差源,并通过解析仿真和实验中固有的其他误差源来计算模型误差。为了演示该方法,我们在商用CFD软件star-ccm +中模拟了患者特定的颅内动脉瘤(IA)的流场。粒子图像测速(PIV)为两个正交平面上的流场提供了验证数据集。沿正交平面的相交验证线,star-ccm +求解器的平均模型误差为5.63%±5.49%。此外,通过将三种代表性的现有验证技术应用于我们的CFD和实验数据集并比较验证结果,我们证明了我们的验证方法优于现有验证方法。我们的验证方法提供了简化的工作流程,以提取CFD求解器的“真实”准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号