首页> 美国卫生研究院文献>Journal of Biomechanical Engineering >Complex Matrix Remodeling and Durotaxis Can Emerge From Simple Rules for Cell-Matrix Interaction in Agent-Based Models
【2h】

Complex Matrix Remodeling and Durotaxis Can Emerge From Simple Rules for Cell-Matrix Interaction in Agent-Based Models

机译:复杂的矩阵重塑和Durotaxis可以从基于Agent的模型中的细胞-矩阵交互的简单规则中产生

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Using a top-down approach, an agent-based model was developed within NetLogo where cells and extracellular matrix (ECM) fibers were composed of multiple agents to create deformable structures capable of exerting, reacting to, and transmitting mechanical force. At the beginning of the simulation, long fibers were randomly distributed and cross linked. Throughout the simulation, imposed rules allowed cells to exert traction forces by extending pseudopodia, binding to fibers and pulling them towards the cell. Simulated cells remodeled the fibrous matrix to change both the density and alignment of fibers and migrated within the matrix in ways that are consistent with previous experimental work. For example, cells compacted the matrix in their pericellular regions much more than the average compaction experienced for the entire matrix (696% versus 21%). Between pairs of cells, the matrix density increased (by 92%) and the fibers became more aligned (anisotropy index increased from 0.45 to 0.68) in the direction parallel to a line connecting the two cells, consistent with the “lines of tension” observed in experiments by others. Cells migrated towards one another at an average rate of ∼0.5 cell diameters per 10,000 arbitrary units (AU); faster migration occurred in simulations where the fiber density in the intercellular area was greater. To explore the potential contribution of matrix stiffness gradients in the observed migration (i.e., durotaxis), the model was altered to contain a regular lattice of fibers possessing a stiffness gradient and just a single cell. In these simulations cells migrated preferentially in the direction of increasing stiffness at a rate of ∼2 cell diameter per 10,000 AU. This work demonstrates that matrix remodeling and durotaxis, both complex phenomena, might be emergent behaviors based on just a few rules that control how a cell can interact with a fibrous ECM.
机译:使用自上而下的方法,在NetLogo内开发了基于代理的模型,其中细胞和细胞外基质(ECM)纤维由多种代理组成,以创建能够施加,反应和传递机械力的可变形结构。在模拟开始时,长纤维随机分布并交联。在整个模拟过程中,施加的规则允许细胞通过延伸假足,与纤维结合并将其拉向细胞来施加牵引力。模拟细胞对纤维基质进行了改造,以改变纤维的密度和排列方式,并以与先前实验工作相一致的方式在基质内迁移。例如,细胞在其细胞周围区域压实基质的程度远远超过整个基质的平均压实程度(696%对21%)。在成对的细胞之间,基质密度增加(增加了92%),并且纤维在平行于连接两个细胞的线的方向上变得更加对齐(各向异性指数从0.45增至0.68),与观察到的“张力线”一致在别人的实验中。细胞以每10,000个任意单位(AU)约0.5个细胞直径的平均速率相互迁移;在细胞间区域的纤维密度更大的模拟中,迁移速度更快。为了探索基质刚度梯度在观察到的迁移中的潜在贡献(即durotaxis),将模型更改为包含具有刚度梯度的纤维的规则晶格,并且只有一个单元。在这些模拟中,细胞优先以增加刚度的方向迁移,速率为每10,000 AU约2个细胞直径。这项工作表明,仅基于控制细胞如何与纤维ECM相互作用的一些规则,矩阵重塑和durotaxis都是复杂的现象,可能是新兴的行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号