首页> 美国卫生研究院文献>Journal of Applied Physiology >CapZ and actin capping dynamics increase in myocytes after a bout of exercise and abates in hours after stimulation ends
【2h】

CapZ and actin capping dynamics increase in myocytes after a bout of exercise and abates in hours after stimulation ends

机译:运动后肌细胞的CapZ和肌动蛋白加帽动态增加刺激结束后数小时CapZ和肌动蛋白加帽动力学减弱

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The time course of the response and recovery after acute activity seen in exercise is not well understood. The goal of this work is to address how proteins of the thin filament (actin and its capping protein CapZ) are changed by 1 h of mechanical stimulation and return to baseline over time. Neonatal rat ventricular myocytes in culture were subjected to cyclic 10% strain at 1 Hz for 1 h to mimic increased mechanical loading during exercise. CapZ and actin dynamics were analyzed by fluorescence recovery after photobleaching (FRAP) using CapZβ1-GFP, actin-GFP, or actin-RFP. After cyclic strain, CapZ dynamics increased above resting controls and abated 2–3 h after cessation of the cyclic strain. Similarly, actin dynamics initially increased and abated 1.5–2 h after the end of stimulation. Neurohormonal hypertrophic stimulation by phenylephrine or norepinephrine treatments also elevated actin dynamics but required a much longer time of treatment (24–48 h) to be detectable. The actin capping mechanism was explored by use of expression of CapZβ1 with a COOH-terminal deletion (CapZβ1ΔC). Increased dynamics of actin seen with CapZβ1ΔC was similar to the response to cyclic strain. Thus it is possible that mechanical stimulation alters the dynamics for CapZ capping of the actin filament through the CapZβ1 COOH terminus, known as the β tentacle, thereby remodeling sarcomeres in cardiac myocytes. This adaptive mechanism, which is probably regulating thin-filament addition, declines a few hours after the end of a bout of exercise.
机译:在运动中看到的急性活动后,反应和恢复的时间过程还不太清楚。这项工作的目的是要解决细丝蛋白(肌动蛋白及其加帽蛋白CapZ)如何在1小时的机械刺激下发生变化,并随着时间的流逝恢复到基线状态。培养中的新生大鼠心室肌细胞在1 Hz频率下遭受10%的周期性应变1 h,以模拟运动过程中机械负荷的增加。通过使用CapZβ1-GFP,肌动蛋白-GFP或肌动蛋白-RFP在光漂白(FRAP)后通过荧光恢复分析CapZ和肌动蛋白的动力学。循环应变后,CapZ动力学高于静置控制,并在停止循环应变后2-3小时减弱。同样,肌动蛋白动力学最初增加并在刺激结束后1.5–2 h减弱。苯肾上腺素或去甲肾上腺素对神经激素肥大的刺激也提高了肌动蛋白的动力学,但需要更长的治疗时间(24-48小时)才能被检测到。利用具有COOH末端缺失的CapZβ1的表达(CapZβ1ΔC)来探索肌动蛋白的封端机制。用CapZβ1ΔC观察到的肌动蛋白动态增加与对循环应变的反应相似。因此,机械刺激有可能通过称为β触角的CapZβ1COOH末端改变肌动蛋白丝CapZ封端的动力学,从而重塑心肌细胞中的肉瘤。这种适应性机制可能调节细丝的添加,在运动结束后数小时下降。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号