首页> 美国卫生研究院文献>American Journal of Physiology - Heart and Circulatory Physiology >A novel quantitative explanation for the autonomic modulation of cardiac pacemaker cell automaticity via a dynamic system of sarcolemmal and intracellular proteins
【2h】

A novel quantitative explanation for the autonomic modulation of cardiac pacemaker cell automaticity via a dynamic system of sarcolemmal and intracellular proteins

机译:通过肌膜和细胞内蛋白动态系统自动调节心脏起搏器细胞自动性的新型定量解释

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Classical numerical models have attributed the regulation of normal cardiac automaticity in sinoatrial node cells (SANCs) largely to G protein-coupled receptor (GPCR) modulation of sarcolemmal ion currents. More recent experimental evidence, however, has indicated that GPCR modulation of SANCs automaticity involves spontaneous, rhythmic, local Ca2+ releases (LCRs) from the sarcoplasmic reticulum (SR). We explored the GPCR rate modulation of SANCs using a unique and novel numerical model of SANCs in which Ca2+-release characteristics are graded by variations in the SR Ca2+ pumping capability, mimicking the modulation by phospholamban regulated by cAMP-mediated, PKA-activated signaling. The model faithfully predicted the entire range of physiological chronotropic modulation of SANCs by the activation of β-adrenergic receptors or cholinergic receptors only when experimentally documented changes of sarcolemmal ion channels are combined with a simultaneous increase/decrease in SR Ca2+ pumping capability. The novel numerical mechanism of GPCR rate modulation is based on numerous complex synergistic interactions between sarcolemmal and intracellular processes via membrane voltage and Ca2+. Major interactions include changes of diastolic Na+/Ca2+ exchanger current that couple earlier/later diastolic Ca2+ releases (predicting the experimentally defined LCR period shift) of increased/decreased amplitude (predicting changes in LCR signal mass, i.e., the product of LCR spatial size, amplitude, and number per cycle) to the diastolic depolarization and ultimately to the spontaneous action potential firing rate. Concomitantly, larger/smaller and more/less frequent activation of L-type Ca2+ current shifts the cellular Ca2+ balance to support the respective Ca2+ cycling changes. In conclusion, our model simulations corroborate recent experimental results in rabbit SANCs pointing to a new paradigm for GPCR heart rate modulation by a complex system of dynamically coupled sarcolemmal and intracellular proteins.
机译:经典的数值模型已将窦房结细胞(SANC)中正常的心脏自动性调节归因于肌膜离子电流的G蛋白偶联受体(GPCR)调节。然而,最近的实验证据表明,GPCR调节SANC的自动化涉及从肌质网(SR)自发的,有节奏的,局部的Ca 2 + 释放(LCR)。我们使用独特且新颖的SANC数值模型探索了SANC的GPCR速率调节,其中Ca 2 + -释放特征通过SR Ca 2 + 抽运的变化进行分级的功能,模仿由cAMP介导的,PKA激活的信号传导调节的phosphorlamban的调节。仅当实验记录的肌膜离子通道变化与SR Ca 2+ <的同时增加/减少结合时,该模型才能通过激活β-肾上腺素能受体或胆碱能受体来忠实地预测SANC的生理变时性调节的整个范围。 / sup>抽水能力。 GPCR速率调节的新数值机制是基于膜电压和Ca 2 + 在肌膜和细胞内过程之间的许多复杂的协同相互作用。主要的相互作用包括舒张期Na + / Ca 2 + 交换电流的变化,该变化耦合较早/更高的舒张期Ca 2 + 的释放(预测实验确定的幅度增​​大/减小(预测LCR信号质量的变化,即LCR空间大小,幅度和每个周期的数量的乘积)的LCR周期移位会向舒张期去极化,并最终向自发动作电位激发速率变化。随之而来的是,L型Ca 2 + 电流的更大/更小和/更多/更少的频繁激活会改变细胞Ca 2 + 的平衡,以支持各自的Ca 2+ 循环更改。总而言之,我们的模型仿真证实了兔子SANC的最新实验结果,指出了由动态结合的肌膜蛋白和细胞内蛋白组成的复杂系统进行GPCR心率调节的新范例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号