首页> 美国卫生研究院文献>American Journal of Physiology - Heart and Circulatory Physiology >RV instantaneous intraventricular diastolic pressure and velocity distributions in normal and volume overload awake dog disease models
【2h】

RV instantaneous intraventricular diastolic pressure and velocity distributions in normal and volume overload awake dog disease models

机译:正常和容量超负荷清醒狗疾病模型中的RV瞬时心室内舒张压和速度分布

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Intraventricular diastolic right ventricular (RV) flow field dynamics were studied by functional imaging using three-dimensional (3D) real-time echocardiography with sonomicrometry and computational fluid dynamics in seven awake dogs at control with normal wall motion (NWM) and RV volume overload with diastolic paradoxical septal motion. Burgeoning flow cross section between inflow anulus and chamber walls induces a convective pressure rise, which represents a “convective deceleration load” (CDL). High spatiotemporal resolution dynamic pressure and velocity distributions of the intraventricular RV flow field revealed time-dependent, subtle interactions between intra-ventricular local acceleration and convective pressure gradients. During the E-wave upstroke, the total pressure gradient along intraventricular flow is the algebraic sum of a pressure decrease contributed by local acceleration and a pressure rise contributed by a convective deceleration that partially counterbalances the local acceleration gradient. This underlies the smallness of early diastolic intraventricular gradients. At peak volumetric inflow, local acceleration vanishes and the total adverse intraventricular gradient is convective. During the E-wave downstroke, the strongly adverse gradient embodies the streamwise pressure augmentations from both local and convective decelerations. It induces flow separation and large-scale vortical motions, stronger in NWM. Their dynamic corollaries on intraventricular pressure and velocity distributions were ascertained. In the NWM pattern, the strong ring-like vortex surrounding the central core encroaches on the area available for flow toward the apex. This results in higher linear velocities later in the downstroke of the E wave than at peak inflow rate. The augmentation of CDL by ventriculoannular disproportion may contribute to E wave and E-to-A ratio depression with chamber dilatation.
机译:通过功能性成像,使用三维(3D)实时超声心动图结合体测法研究舒张期右心室(RV)的室内舒张期右心室(RV)流场动力学,并在正常壁运动(NWM)和RV容量超负荷控制下对7只清醒犬进行了流体动力学计算舒张期矛盾的间隔运动。流入环空和腔室壁之间的急流横截面引起对流压力升高,这代表“对流减速负载”(CDL)。脑室右室流场的高时空分辨率动压和速度分布揭示了脑室内局部加速度和对流压力梯度之间的时间依赖性微妙相互作用。在E波上冲过程中,沿心室内流的总压力梯度是局部加速度引起的压力下降与对流减速引起的压力上升(部分抵消局部加速度梯度)的代数和。这是舒张早期心室内梯度小的原因。在峰值体积入流时,局部加速度消失,总的不利心室内梯度是对流的。在E波下冲程期间,强烈的逆梯度体现了局部和对流减速引起的沿河方向的压力增加。在NWM中,它会引起流动分离和大规模的涡旋运动。确定了他们关于脑室内压力和速度分布的动态推论。在NWM模式中,围绕中心核心的强环形涡旋侵蚀了可用于流向顶点的区域。这导致在E波下行冲程中的线速度比峰值流入速度时的线速度更高。心室瓣环比例失调引起的CDL增大可能导致E波和E-A比率随室扩张而降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号